Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость и внутренняя структура коллоидов

    Для гидратации белка наибольшее значение имеют пептидные связи, за счет которых притягивается примерно /3 всей гидрата-ционной воды. В общем частицы гидрофильных коллоидов связывают значительные количества воды так, 1 г сухого крахмала при растворении связывает 0,18 г воды, 1 г яичного альбумина (белка) — 0,35 г воды, 1 г карбоксигемоглобина — 0,353 г воды. Связанная полярными группами вода приобретает новые качества, приближающие ее к твердому веществу ее молекулы имеют уплотненное расположение, свойства воды как растворителя понижены, она не замерзает при низких температурах и т. п. В свою очередь, гидратированное вещество также приобретает иные свойства повышается его устойчивость в растворе, уменьшается скорость диффузии и др. Вязкость и скорость образования внутренних структур в этих растворах значительно выше, чем в коллоидных. [c.174]


    I тип — суспензоиды (или необратимые коллоиды, лиофобные коллоиды). Так называют коллоидные растворы металлов, нх оксидов, гидроксидов, сульфидов и других солей. Первичные частицы дисперсной фазы коллоидных растворов этнх веществ по своей внутренней структуре не отличаются от структуры соответствующего компактного вещества и имеют молекулярную или ионную кристаллическую решетку. Суспензоиды — типичные гетерогенные высокодисперсные системы, свойства которых определяются очень сильно развитой межфазовой поверхностью. От суспензий они отличаются более высокой дисперсностью. Суспензоидами их назвали потому, что, как и суспензии, они не могут длительно существовать в отсутствие стабилизатора дисперсности. Необратимыми их называют потому, что осадки, остающиеся при выпаривании таких коллоидных растворов, не образуют вновь золя при контакте с дисперсионной средой. Лиофобнымн (греч. лиос — жидкость, фобио — ненавижу) их назвали, предполагая, что особые свойства коллоидных растворов этого типа обусловлены очень слабым взаимодействием дисперсной фазы и дисперсионной среды. Концентрация лиофобных золей невелика, обычно меньше 0,1%. Вязкость таких золей незначительно отличается от вязкости дисперсионной среды. [c.312]

    Лиофильные коллоиды закону Пуазейля не подчиняются, отклоняясь от него, причем эти опслонения тем больше, чем больше концентрация золя. Повышение температуры сглаживает эти расхождения. Можно достичь температуры, при KOTOipofi вязкость данного коллоида будет следовать закону Пуазейля. Для желатины такой переломной температурой является 35°С. При комнатной температуре понижение давления в вискозиметре влечет за собой непротор-ционально большое увеличение вязкости. Это указывает на то, что в золях лиофильных коллоидов, кроме взаимодействия между дисперсной фазой и дисперсионной средой, обнаруживается весьма сильное взаимодействие между самими частицами, в результате чего возникает внутренняя структура. [c.296]

    Синерезис. Мы уже отмечали, что коллоидио-дисперсные системы обладают во времени лишь ограниченной устойчивостью. Мы видели, что старение лиофильных золей связано с процессами агрегации внутри них. Агрегируются отдельные нитеобразные молекулы высокополимеров, причем образуются более крупные и более плотно построенные мицеллы равновесие молекулы ши-целлы при старении смеш,ается вправо. Частичная концентрация золей уменьшается, что приводит к уменьшению осмотического давления их. Одновременно мицеллы начинают взаимодейстзоватъ между собой, создавая внутреннюю структуру золя. При этом возрастает структурная сольватация, и вязкость золя резко повышается. Дальнейшее структурирование золя может привести к застудневанию всей системы, связанному с полной иммобилизацией растворителя. [c.403]


    При таких превращениях адсорбционных систем наблюдаются некоторые переходные фазы, играющие определенную роль в химии глии. В этих фазах кристаллический рост может происходить только в одном или двух направлениях, по которым образуются микро- или макроскопические кристаллиты, в то время как по другим направлениям система остается коллоидно-дисперсной. Таким образом могут образоваться одномерные коллоиды с типичными физико-химическими свойствами, принадлежащие частично к области коллоидной химии, а частично к области кристаллографии. Уже в 1918 г. Марцели получил мелкие, чрезвычайно тонкие чешуйки слюды. Моиомолекулярный слой в этих кристаллах в направлении его поверхности может быть даже макроскопических размеров. Для таких продуктов существенно, что трехмерный рост их кристаллов затруднен, например, высокой вязкостью среды, в которой они растут. Поэтому такие аномалии развития кристаллов часто наблюдаются при зарухании вязких расплавов стекла или при разделении компонентов в густых коллоидных гелях. Материалы, состоящие преимущественно из таблитчатых или игольчатых частиц, могут, таким образом, оставаться истинными коллоидами в одном или двух направлениях. Особенно важный пример такого рода привел Уэрри , обнаруживший истинные коллоиды в естественном бентоните, образованном в процессе кристаллизации вулканических стекол (пеплы, пемзы) и последующей гидротермальной переработки, содержащем типичные микроскопические реликтовые структуры . Бентониты, состоящие преимущественно из монтмориллонита, имеют сходное с коллоидными гелями свойство сильно набухать и обладают такой же пластичностью во влажном состоянии и высокой адсорбционной способ-ностьюЧ Они отчетливо двупреломляют, что прежде принималось за явление внутреннего натяжения, тогда как, согласно Ларсену, двупреломление объясняется их кристаллической структурой. Если сухой бентонит растереть с иммерсионной жидкостью, то будет наблюдаться ясная интерференционная картина в сходящемся поляризованном свете двуосных кристаллов с малым углом оптиче- [c.307]


Смотреть страницы где упоминается термин Вязкость и внутренняя структура коллоидов: [c.82]    [c.312]    [c.312]   
Смотреть главы в:

Физико-химия коллоидов -> Вязкость и внутренняя структура коллоидов




ПОИСК





Смотрите так же термины и статьи:

Коллоиды



© 2025 chem21.info Реклама на сайте