Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамические свойства коллоидных растворов

    Многочисленные исследования, проводившиеся на протяжении многих десятилетий, показали, что коллоидное состояние вещества—это высокодисперсное (сильно раздробленное) состояние, в котором отдельные частицы являются не молекулами, а агрегатами, состоящими из множества молекул. Приняв это определение коллоидного состояния (коллоидной системы), можно сформулировать те принципиальные особенности, которые отличают коллоидные системы от истинных растворов. Поскольку коллоидные частицы состоят из множества молекул, то,, очевидно, им могут быть приписаны все термодинамические свойства Фазы. Равным образом молекулы среды, в которой диспергированы коллоидные частицы, образуют другую фазу. Следовательно, всякий коллоидный раствор является гетерогенной, многофазной (в простейшем случае двухфазной) системой в отличие от истинных растворов, которые являются гомогенными системами. Отсюда же следует вывод, что поскольку всякий коллоидный раствор представляет гетерогенную систему, условием ее образования является нерастворимость (или очень малая растворимость) вещества одной фазы в веществе другой фазы, ибо только между такими веществами могут существовать физические поверхности раздела, [c.12]


    Та или иная дисперсная система предназначена для выполнения определенных функций служить исходным материалом для формования строительной конструкции, если это цементная смесь исполнить роль защитной или декоративной краски, если это суспензия пигмента подчинить движение жидкости воздействиям магнитного поля, если это коллоидный раствор ферромагнетика, и т. д. Возможность дисперсной системы выполнить предназначенную ей функцию зависит от ее рецептуры — наличия в составе системы частиц вяжущих, окрашенных или магнитных материалов. Однако качество продукта и технологичность его применения и получения определяются общим свойством любых дисперсных систем вне зависимости от их рецептуры — их устойчивостью. Устойчивость — это способность системы сохранять постоянство своих свойств во времени или при достаточно сильном изменении условий. Среди разнообразных свойств всеобъемлющим является равномерность распределения дисперсного материала по всему объему системы. Она определяется многими факторами, к числу которых относится устойчивость к некоторым частным конкретным изменениям состояния системы, среди которых наиболее важна устойчивость против коагуляции и оседания частиц. Терминология, касающаяся устойчивости, сложилась до того, как были выявлены многие детали и варианты изменения состояния взвесей. По этой причине толкование ряда понятий приобрело неоднозначность. Так, коагуляция — это слипание частиц и, кроме того, разрушение дисперсной системы, при которой происходит ее разделение на фазы осадок, дисперсионную среду. Слипание частиц, сопровождающееся не разрушением, а лишь изменением состояния системы, иногда желательным и полезным. Агрегативная устойчивость — способность дисперсной системы противостоять слипанию частиц в том или ином понимании сути этого явления. Слипание может быть разным как по характеру, так и по силе сцепления частиц. Понятие кинетической устойчивости обычно характеризует способность взвеси противостоять расслаиванию (оседанию частиц) за некоторый конечный интервал времени. Термодинамическая устойчи- [c.624]

    Коллоидное состояние вещества — это состояние, в котором вещество находится в высокоднсперсном (сильно раздробленном) виде, отдельные его частицы являются не молекулами, а агрегатами, состоящими из множества молекул. Таким агрегатам могут быть приписаны все термодинамические свойства фазы. Молекулы среды, в которой диспергированы коллоидные частицы, образуют другую фазу. Следовательно, коллоидный раствор представляет собой гетерогенную систему. [c.5]


    Вместе с тем равновесные свойства (термодинамические характеристики) образующихся растворов полимеров не зависят от способа их приготовления. Растворы высокомолекулярных соединений в большинстве случаев истинные. Однако на практике встречается весь спектр взаимодействий растворителей с полимерами - от способности образовывать истинные растворы до образования коллоидных систем с различной степенью дисперсности частиц полимера. [c.90]

    По ряду свойств аэрозоли подобны коллоидным растворам для них характерны термодинамическая неустойчивость, броуновское движение, диффузия, седиментация, эффект Тиндаля, избирательное светорассеяние, электрофорез и др. Но газовая дисперсионная среда вносит некоторые особенности светорассеяние в аэрозолях значительно сильнее, чем в коллоидных растворах броуновское движение и диффузия — более интенсивны электрический заряд дисперсных частиц аэрозолей ничтожно мал, а воздух [c.290]

    П. П. Веймарн и В. Оствальд предложили рассматривать свойства дисперсных систем только с позиции их степени дисперсности, не учитывая гетерогенности. Более общие представления о свойствах коллоидных растворов были развиты Н. П. Песковым, который подразделял коллоиды на два класса к первым он отнес коллоиды, которые самопроизвольно диспергируют в растворителе, образуя коллоидные растворы. Если вызвать коагуляцию такой системы, то в коагуляте окажется много растворителя. После удаления электролита (коагулята) коагулянт, как правило, сохраняет способность вновь диспергировать в растворителе. Второй класс коллоидов, по Н. П. Пескову, — это системы, у которых коагуляция необратима, коагулят (осадок), как правило, не содержит дисперсной среды. При этом только вторая группа коллоидных растворов представляет собой типичные коллоиды, инертные по отношению к дисперсионной среде. Как это ни парадоксально, но вещества, получившие впервые в истории науки название коллоиды (гуммиарабик, белки, крахмал), оказались не настоящими коллоидами. Водные растворы этих веществ в отличие от типичных коллоидов представляют собой гомогенные термодинамически равновесные системы, устойчивые и обратимые, т. е. представляют собой истинные растворы макромолекул высокомолекулярных соединений (ВМС). Различие двух типов коллоидов связано в значительной мере с гибкостью и асимметричным строением макромолекул. Последние взаимодействуют с растворителем (дисперсионной средой) подобно низкомолеку- [c.382]

    Кроме классификации коллоидов по размерам частиц (или по удельной поверхности) существуют классификации по агрегатному состоянию (табл.1), структуре (свободно или связнодисперсные системы), межфазному взаимодействию дисперсной фазы и дисперсионной среды (лиофильные и лиофобные коллоиды). Особое место занимают растворы высокомолекулярных соединений (полимеров), которые являются по существу термодинамически устойчивыми истинными растворами. Однако размеры молекул полимеров значительно превышают размеры обычных молекул (в том числе и растворителя), поэтому данным растворам свойственны многие свойства обычных классических коллоидных систем. В настоящей работе из-за ограниченного объема рассматриваются в основном только классические коллоиды. [c.41]

    С физической точки зрения аномальные свойства коллоидных растворов и суспензий обусловлены общей громадной поверхностью мелких твердых частиц, находящихся в единице объема смеси. Поскольку поверхность твердых частиц является поверхностью раздела фаз, то в силу особых термодинамических свойств этой поверхности в жидкой дисперсной среде вблизи этой поверхности образуется слой, в котором сама дисперсионная среда обладает аномальными свойствами по сравнению с ее обычными характеристиками в объеме. Обычно этот слой дисперсионной среды называют сольватной оболочкой частицы. [c.31]

    Однако уже к тому времени были известны коллоидные системы, обладающие термодинамической устойчивостью, например, растворы мыл и других коллоидных ПАВ (мицеллярные растворы). Кроме того, ио мере исследования структуры полимеров и их растворов стала проявляться важная роль поверхностных явлений в их свойствах. Это вызвало необходимость обратиться к более четким понятиям гетерогенности и микрофазы. [c.311]

    Итак, в результате рассмотрения основных свойств коллоидных растворов можно сделать вывод золи — гетерогенные, термодинамически неустойчивые системы существуют только в присутствии ионов-стабилизаторов, легко и необратимо коагулируют при незначительном добавлении электролитов, отчетливо обнаруживают эффект Фарадея —Тиндаля. Частицы золей, как правило, слабо взаимодействуют с дисперсионной средой. [c.376]


    Термодинамические исследования свойств растворов полимеров, проведенные М. Хаггинсом, П. Флори, В. А. Каргиным, С. М. Липатовым и другими исследователями, показали, что большинство высокомолекулярных соединений образует истинные растворы и лишь некоторые из них могут образовывать и коллоидные растворы. [c.52]

    Впечатляющий прогресс на грани тысячелетий в области миниатюризации и повышения быстродействия электронных микросхем не в последнюю очередь обязан грамотному использованию капиллярных свойств материалов при изготовлении микросхем, основным конструктивным элементом которых являются тонкие пленки. В ряду проблем, решение которых определяет возможности миниатюризации изделий микроэлектроники, находится и проблема термодинамической устойчивости тонких пленок. Щукин и Ребиндер [37] нашли условие, при котором возможно самопроизвольное диспергирование вещества (жидкости) в результате тепловых флуктуаций формы межфазной границы. В обобщенном виде оно имеет вид <зА < кТ, где а — межфазное натяжение, А — приращение площади межфазной границы при ее деформировании, р — числовой коэффициент порядка 10, Л — константа Больцмана и Т — температура. Флуктуации поверхности можно представить как образование на ней лунок или выступов, имеющих форму шарового сегмента радиусом К и глубиной (высотой) к. Такую форму имеет, например, капля жидкости на твердой поверхности (см. рис. 3.14). При прогибе поверхности раздела фаз на глубину к приращение А площади поверхности равно пк независимо от радиуса прогиба К, в том числе и при образовании капли радиусом К = к. При нормальной температуре и натяжении 0,1 Дж/ м вполне вероятно возникновение флуктуационных лунок (или выступов) глубиной 10 м (это размер одной молекулы), а при изменении натяжения или температуры глубина флуктуационных лунок и выступов растет пропорционально отношению 77а. Одно из следствий этой закономерности — самопроизвольное диспергирование монолитных веществ (жидкостей) при достаточно низкой величине межфазного натяжения и образование термодинамически устойчивых коллоидных растворов. Термодинамическую устойчивость можно считать следствием того, что приращение поверхностной энергии при диспергировании вещества компенсируется уменьшением свободной энергии системы за счет увеличения энтропии при уве- [c.750]

    Однако, если мы и называем растворы высокомолекулярных веществ коллоидными, не надо забывать, что они являются таковыми только в смысле размера частиц. Никакие другие свойства коллоидных растворов, в особенности основное их свойство — термодинамическая неустойчивость, растворам высокополимеров приписаны быть не могут. [c.252]

    В коллоидной химии подробно изучаются свойства лиофобных золей, и все свойства, присущие типичным лиофобным системам, являются свойствами так называемых коллоидных растворов.. Перечислим эти основные свойства. Коллоидный раствор образуется не самопроизвольно, является системой агрегативно и термодинамически неустойчивой, необратимой коллоидный раствор стареет во времени для придания устойчивости коллоидному раствору необходимо введение в систему стабилизатора, т. е. третьего компонента [c.35]

    Адсорбируя ВМС, ядро лиофобного коллоида приобретает свойство обратимости. Это явление, в частности, используют в фармацевтической промышленности. Вводя желатину, образуют термодинамически устойчивые обратимые коллоидные растворы серебра, золота, ртути. Это позволяет после выпаривания воды получить сухой остаток, например, серебра, который затем после добавления воды самопроизвольно дисперги- руется, образуя коллоидный раствор. Частицы желатины, которые сохраняются на поверхности кристалликов серебра, придают свойства гидрофильности. Сухое растворимое серебро легко транспортируется, отпадает необходимость транспортировать коллоидный раствор, в котором вода составляет более 99%. [c.424]

    За последние 15 лет работами многих ученых, в первую очередь В. А. Каргина, С. М. Липатова и других, было доказано, что системы, называвшиеся лиофильными золями, на самом деле представляют собой истинные растворы высокомолекулярных соединений, т. е. системы гомогенные и термодинамически равновесные, в противоположность лиофобным коллоидам (золям) — системам гетерогенным и термодинамически неравновесным. Структурной единицей лиофильных золей является не мицелла, а сильно сольватирован-ная макромолекула высокомолекулярного (высокополимерного) соединения. Растворы таких веществ, с одной стороны, проявляют свойства истинных растворов, с другой стороны, обнаруживают свойства, сближающие их с коллоидными растворами. Этот вопрос Б дальнейшем будет рассмотрен более подробно. [c.299]

    При образовании истинного раствора (или просто раствора) распределенное в среде вещество диспергировано до атомного ил г молекулярного уровня. Примеры таких систем многочисленны воздух (газообразный раствор, содержащий азот, кислород п т. д.), жидкие водно-солевые растворы, сплавы меди с золотом, представляющие собой пример твердых растворов, и многие другие. Для истинных растворов — термодинамически равновесных систем — В противоположность взвесям характерна неограниченная стабильность во времени. Наибольшее значение имеют жидкие, а в последнее время и твердые растворы, находящие широкое применение в самых различных областях науки и техники. Промежуточное положение по степени дисперсности п свойствам занимают коллоидные растворы. В коллоидных растворах частицы диспергированного вещества представляют собой относительно простые агрегаты с размерами, промежуточными между истинными растворами и взвесями. С этой точки зрения коллоидные растворы можно рассматрИ" вать как микрогетерогенные системы. [c.241]

    Мы рассмотрели наиболее общие свойства ВМС и их растворов без учета электрических зарядов. Между тем, многие набухшие н растворенные полимеры диссоциированы на ионы и представляют собой, таким образом, полиэлектролиты, относящиеся к классу коллоидных электролитов. Наличие заряда, а следовательно, и электрической компоненты свободной энергии, су-и ественно изменяет термодинамические, кинетические и другие свойства и создает ряд особенностей поведения заряженных систем. Эти особенности очень важны не только для практики, но и для прогресса науки, главным образом в одном из важнейших ее направлений — в коллоидно-химической биологии. Перейдем к рассмотрению свойств коллоидных электролитов. [c.320]

    Линейные гибкие макромолекулы. Способность молекулярных цепей изменять свою конфигурацию в зависимости от внешних условий, т. е. гибкость или жесткость этих цепей, является кардинальной характеристикой макромолекул, определяющей свойства полимерных систем. Различие в поведении гибких и жестких частиц проявляется, как указывалось, в электрохимических свойствах (глава пятая), в термодинамических свойствах растворов полимеров (глава восьмая), в молекулярно-кинетических свойствах коллоидных систем (главы вторая и восьмая), в свойствах гелей (глава девятая) и др. Это различие связано и с основными характеристиками структуры и физикомеханическими свойствами полимерных материалов. Как уже указывалось, гибкость и жесткость макромолекул являются относительными характеристиками, зависящими от ряда внешних условий, прежде всего, от температуры однако, применительно к обычному интервалу средних температур, полимеры с гибкими и жесткими макромолекулами достаточно отчетливо различаются между собой влияние других факторов (пластификации, скорости деформации) описано ниже (стр. 242—251). [c.227]

    Растворы мыл имеют большое темическое значение.- Они широко исполТзуются не только как моющие средства, но и как средства для улучшения смачивания различных поверхностей водой, для 1мусшния стойких эмульсий и пен, для процессов флотации и т. дГ В технике нашло применение и такое свойство мыл. Если в достаточно концентрированные растворы мыл вводить не растворимые в воде органические вещества (алифатические и ароматические углеводороды, маслорастворимые красители и др.), последние способны коллоидно растворяться или солюбилизироваться. В результате солюбилизации образуются почти прозрачные термодинамически равновесные растворы. Явление солюбилизации очень важно для проведения полимеризации непредельных углеводородов в эмульсиях с целью получения синтетических латексов или синтетических каучуков. [c.354]

    Электрические свойства. В коллоидном растворе частицы находятся в постоянном движении, поэтому диффузный (очень размытый) слой отстает от частицы, и часть ионов этого слоя отрывается. В результате наблюдается декомпенсация зарядов, коллоидная частица становится отрицательно заряженной, а окружающий ее раствор приобретает положительный заряд. Возникающий при этом потенциал называется электрокинетическим потенциалом частицы (обозначается -потенциал, читается —дзета-потенциал), -потенциал составляет часть термодинамического потенциала е, возникающего на границе твердое тело-раствор, -потенциал является важной характеристикой системы, величина его тем больще, чем больше толщина диффузного слоя. [c.23]

    Макромолекулы могут образовывать истинные молекулярные растворы. При этом растворение высокомолекулярных веществ происходит самопроизвольно, и их растворы термодинамически устойчивы. Однако растворы полимеров близки по свойствам к коллоидным растворам, так как размеры макромолекулы сравнимы с коллоидными частицами [5]. [c.12]

    Физическая химия полимеров как самостоятельная область химии высокомолекулярных соединений развилась в 40-е годы на базе классической коллоидной химии [29], традиционным предметом исследования которой были, в частности, лиофильные коллоиды — природные полимеры [30]. Отказ от ряда представлений классической коллоидной химии и учет специфики строения высокомолекулярных соединений стимулировали интенсивное развитие исследований их структуры, физико-химических и механических свойств. Однако дальнейшее развитие представлений о структуре полимеров и свойствах их растворов вновь привело к необходимости рассмотрения гетерогенности этих систем на молекулярном и надмолекулярном уровнях, выражающейся в существовании различных степеней порядка в расположении макромолекул даже в аморфной фазе, существовании многофазных полимерных систем, наличии агрегатов или ассоциатов (мицелл) в термодинамически устойчивых растворах [31]. [c.9]

    Если бы растворы высокомолекулярных веществ представляли собой такие же системы, то, несомненно, они должны были быть отнесены к настоящим коллоидным системам. Действительно, ряд авторов [3, 4] считают, что растворы высокомолекулярных веществ обладают теми признаками коллоидных растворов, которые перечислены выше, и поэтому относят их к коллоидным растворам, являющимся микрогетерогенными и термодинамически неустойчивыми. В качестве основного доказательства микрогетерогенности обычно фигурирует неприменимость правила фаз к процессам растворения и осаждения высокомолекулярных веществ, что в наиболее общей форме было сформулировано в правиле осадков Во. Оствальда. Вторым доводом служит явление старения и, вообще, наличие необратимых процессов (гистерезисные явления при осаждении и растворении). Косвенным доказательством наличия микрогетерогенности раствора высокомолекулярных веществ являются плохая воспроизводимость результатов, получаемых различными авторами при исследовании растворов высокомолекулярных веществ, и зависимость свойств этих растворов от метода их получения. [c.243]

    Ввеяеиие коицентрации частиц дисперсной фазы как са1мостоятельной переменной сближает описание термодинамических свойств коллоидных систем и молекулярных (истинных) растворов, т. е. микрогетерогенных и гомогенных систем. Промежуточное положение коллоидно-дисперсных систем между типичными гетерогенными системами, включающими макрофазы, и гомогенными растворами приводит к тому, что по мере роста дисперсности частиц дисперсной фазы становятся все более существенными характерные особенности молекулярно-дисперсного состояния вещества и, для самых малых частиц, постепенно ослабевает роль свойств дисперсных систем, роднящих их с макрофазами. Так, грубодисперсным системам свойственно наличие хорошо сформированной поверхности раздела фаз, к которой может быть отнесена поверхностная энергия частицы в таких системах содержат достаточно большое число молекул, чтобы можно было говорить об их статистических (усредненных) свойствах. Вместе с тем уже в таких системах возникают характерные отличия свойств частиц от макроскопических фаз химический потенциал вещества дисперсной фазы, как было показано в 3 гл. 1, начинает зависеть от размера частиц. [c.117]

    Растворы полимеров раньше рассматривали как коллоидные растворы (лиофильные золи). Однако в работах Флори, Добри, В. А. Каргина и др. было показано, что эти растворы, в особенности при невысоких концентрациях полимера, должны рассматриваться как обычные растворы, отличающиеся от последних внутренним строением, термодинамическими и другими свой-. ствами, что обусловлено лишь большой величиной и особенностями строения макромолекул полимеров и сильным различием в величине частиц полимера и растворителя. Наиболее отчетливо это проявляется для очень разбавленных растворов. Для этих растворов применимы обычные соотношения, характеризующие зависимость осмотического давления растворов и других свойств от их концентрации, однако все же следует учитывать очень большую величину макромолекул полимера и гибкость цепей. Подвижность отдельных звеньев цепей приводит к тому, что макромолекула может обладать очень большим числом конформаций. Вследствие этого соответственно увеличивается термодинамическая вероятность и, следовательно, энтропия системы. [c.601]

    По мере развития коллоидной химии неоднократно изменялась ее терминология и оценка важности изучения различных типов систем. Первоначально истинными коллоидами называли клееподобные системы, которые являются растворами высокомолекулярных соединений, а золи золота, иодида серебра, берлинской лазури и других называли случайными коллоидами. Затем большое внимание стало уделяться системам типа золя золота, которые были названы лиофобными коллоидами . После того как работами Г. Штаудингера, В. А. Каргина и других ученых было установлено принципиальное различие в строении частиц и термодинамических свойств лиофобных коллоидов и растворов высокомолекулярных соединений, последние стали исключать из коллоидной химии и изучать отдельно. В настоящее время растворы высокомолекулярных соединений рассматривают как отдельную группу лиофильных коллоидных систем. [c.12]

    Сравнительное изучение типичных коллоидов и высокомолекулярных веществ показало принципиальное различие ряда их свойств. Как уже было указано, типичными свойствами коллоидных систем являются гетерогенность, поверхность раздела фаз, агрегативная и термодинамическая неустойчивость, необратимость. В противоположность типичным коллоидным системам работами Каргина и его сотрудников было показано, что растворы высокомолекулярных веществ — термодинамически обратимые молекулярные гомогенные (однофазные) системы, агрегативно устойчивые без стабилизаторов. Сами высокомолекулярные вещества отличаются способностью к самопроизвольному растворению при соприкосновении с хорошими растворителями, а растворы получаются устойчивыми и без стабилизатора. В этом отношении высокомолекулярные вещества стоят ближе к веществам, образующим истинные растворы. Однако в плохих растворителях или в нерастворяющей среде высокомолекулярные вещества способны давать дисперсии со свободными поверхностями раздела. Эти дисперсии по своим свойствам относятся к типичным микрогетерогенным и коллоидныр системам (например, синтетический латекс и дисперсии полимеризационных смол). [c.18]

    Растворы высокомолекулярных соединений не являются коллоидными системами. Они отличаются от последних характерными признаками, будучи термодинамически равновесными системами, агрегативно устойчивыми без стабилизатора. Однако некоторые свойства коллоидных систем и растворов высокомолекулярных соединений одинаковы молекулы полимеров близки по размерам к коллоидным частицам, поэтому и те и другие системы обладают небольшой способностью к диффузии их можно диализовать растворы высокомолекулярных соединений, как и коллоидные системы, обнаруживают опалесценцию. Наконец, при определенных условиях в растворах полимеров и в коллоидных системах возможно структурирование. Поэтому многие физико-химические свойства высокомолекулярных соединений рассматриваются в курсе коллоидной химии. [c.69]

    Особые свойства вещества в критическом состоянии вблизи температуры Тс полного смешения двух фаз в системах жидкость — пар и жидкость — жидкость давно привлекали к себе интерес ученых. Сильное рассеяние света в подобных системах наводило на мысль, что для них характерно коллоидное строение. Теоретические предпосылки существования термодинамически устойчивых двухфазных систем (критических эмульсий) при температурах немного ниже 1с были впервые рассмотрены Фольмером. Он предположил, что критическая система — это своеобразный коллоидный раствор, который, в отличие от полной молекулярной раздробленности истинного раствора, характеризуется определенным распределением микрокапель дисперсной фазы по размерам. Используя при анализе критической системы обычные термодинамические соотношения для истинных растворов, Фольмер [c.220]

    В части 3 рассматриваются дисперсные системы, свойства которых принципиально отличаются от свойств лио-фобных золей. Это отличие состоит в том, что лиофильные коллоидные растворы образуются самопроизвольно и являются термодинамически устойчивыми и обратимыми. Наиболее типичные представители таких систем — растворы коллоидных поверхностно-активных веществ (глава 12) и высокомолекулярных соединений (главы 13, 14). Лиофильные коллоиды находят широкое применение в различных отраслях промышленности и, вместе с тем, используются в качестве стабилизаторов лиофобных золей и микрогетеро-генных систем. [c.4]

    В сборнике приведены теоретические и экспериментальные данные о структуре и свойствах коллоидных систем и нефтяных растворов иолимеров, структурированных углеводородов и нефтепродуктов, имеющих практическое значение в области добычи нефти, повышения нефтеотдачи пластов, транспортирования нефти и ирц-ыененпя нефтепродуктов. Рассматриваются термодинамические и электрокпнетические аспекты формирования молекулярных структур, частиц твердой фазы в углеводородных системах, фазовы х переходов в растворах и дисперсных системах. [c.2]

    Р. С. Толмэн указывал, что такие величины, как удельный объем, удельная оттальпия и удельная внутренняя энергия (полученные из общего объема, энтальпии, внутренней энергии и веса системы), являются интенсивными по характеру. Без ущерба для точности это утверждение справедливо и для удельного объема, удельной энтальпии или удельной внутренней энергии гетерогенных систем. В то же время нельзя оперировать понятиями коэффициента преломления, вязкости и некоторых других подлинно интенсивных свойств применительно к гетерогенной системе, так как в этом случае их эффективное значение зависит не только от относительного количества фаз, но и от степени их дисперсии, или других факторов, являющихся сложными функциями давления, температуры и веса каждого компонента. Термодинамическое состояние гетерогенной системы не может быть точно зафиксировано до тех пор, пока не будет установлена конфигурация ее различных частей. В пределах обычных изменений конфигурации, которые имеют место в инженерной практике, аа исключением коллоидных растворов или других случаев, характеризующихся высокими удельными поверхностями или необыкновенно большой разностью высотных отметок, конфигурация не оказывает заметного влияния на термодинамическое состояние системы. [c.177]

    В сборнике обобщены теоретические и экспериментальные данные о структуре и свойствах коллоидных п нефтяных растворов полимеров, структурированных углеводородов и нефтепродуктов. Рассматриваются термодинамические и термокинетические аспекты формирования молекулярных структур, часгиц твердой фазы в углеводородных системах, фазовых переходов в растворах и дисперсных системах. [c.136]

    Особыми свойствами обладают высокомолекулярные соединения с молекулярной массой, выражающейся десятками и сотнями тысяч, а иногда и миллионами единиц. Растворы таких веществ представляют собой однофазные, термодинамически устойчивые, обратимые системы. Однако, несмотря на то, что в данном случае высокомолекулярные соединения находятся в истиннорастворенном состоянии, их растворы обладают некоторыми свойствами коллоидных систем. Это объясняется тем, что макромолекулы по своим размерам приближаются к коллоидным частицам, и граница их контакта с дисперсионной средой подобна межфазной поверхности в гетерогенных системах. В подобных случаях, когда частицы находятся как бы на грани перехода в самостоятельную фазу, возможно расхождение структурных и термодинамических критериев фазового состояния, проявление гомогенности по одним свойствам и гетерогенности по другим. [c.53]


Смотреть страницы где упоминается термин Термодинамические свойства коллоидных растворов: [c.149]    [c.245]    [c.377]    [c.290]    [c.437]    [c.34]    [c.19]    [c.7]    [c.222]   
Физико-химия коллоидов (1948) -- [ c.318 ]




ПОИСК





Смотрите так же термины и статьи:

Растворов свойства

Растворы коллоидные

Термодинамические свойства

Термодинамические свойства растворов



© 2025 chem21.info Реклама на сайте