Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоиды обратимые и необратимые

    Коллоидные растворы классифицируют по способности сухого остатка, полученного при осторожном выпаривании, растворяться в чистой дисперсионной среде. Системы, сухой остаток которых не способен самопроизвольно диспергироваться в дисперсионной среде, называются необратимыми (например, лиозоли металлов, гидрозоли иодида серебра и др.). Обратимыми коллоидными системами называются системы, у которых сухой остаток при соприкосновении со средой обычно сначала набухает, а затем самопроизвольно растворяется и образует прежнюю дисперсию (например, раствор желатины в воде или каучука в бензоле). Обратимость или необратимость коллоидной системы определяется отношением дисперсной фазы к дисперсионной среде. Дисперсная фаза обратимых коллоидов молекулярно взаимодействует с дисперсионной средой и поэтому способна в ней растворяться. По этому признаку дисперсные системы Делят на две основные группы лиофильные (обратимые) системы (истинно лиофильные и поверхност-но-лиофильные) и лиофобные (необратимые) системы. Если же дисперсионной средой системы является вода, эти два класса можно назвать соответственно гидрофильными и гидрофобными системами. Отсюда следует, что лиофобные коллоидные растворы являются типичными коллоидными системами, а лиофильные системы представляют собой не что иное, как растворы высокомолекулярных соединений. Существуют и промежуточные системы, которые трудно отнести к какому-либо одному из названных классов, например, золь 8102 и золи гидроксидов некоторых металлов. Лиофильные системы устойчивы, т. е. стабильны во времени, лиофобные системы неустойчивы и постепенно [c.17]


    Дисперсные системы. Коллоидные растворы. Получение коллоидных растворов и и.х отличительные свойства. Степень дисперсности. Мицелла. Золи. Лиофильные и лиофобные коллоиды. Коагуляция и седиментация и причины образования осадка в коллоидных системах. Гели. Взаимная коагуляция коллоидов. Обратимые и необратимые коллоиды. [c.244]

    Если коллоидные частицы соединяются непосредственно поверхностями, то коагуляция будет необратимой. Если между соединяющимися частицами остаются небольшие сольватные оболочки или двойной электрический слой, образовавшийся осадок можно снова перевести в раствор. Такой процесс называется обратимой коагуляцией. Растворы высокомолекулярных соединений (ВМС) и некоторых органических веществ образуют на поверхности коллоидных частиц прочные адсорбционно-сольватные слои, способствующие повышению устойчивости коллоидного раствора, т. е. проявляют защитное действие. Стабилизирующее действие этих соединений способствует лиофилизации (гидрофилизации) дисперсных систем по свойствам они становятся близкими к молекулярным коллоидам (обратимы, устойчивы). Если концентрация стабилизатора недостаточна для образования адсорбционно-сольватных слоев, его защитное действие резко снижается. При очистке воды содержащиеся в ней органические коллоиды замедляют процесс коагуляции, повышая устойчивость образующихся коллоидных растворов гидроксидов алюминия и железа. [c.120]

    Обычно коллоидные системы подразделяют на лиофобные (которые также называют суспензоидами или гидрофобными, неорганическими, необратимыми или повторно нерастворимыми коллоидами) и лиофильные (которые также называют эмульсоидами или гидрофильными, органическими, обратимыми или повторно растворимыми коллоидами). [c.177]

    Лиофильные коллоиды, выделившиеся из дисперсной среды, при повторном внесении в нее возвращаются из состояния студня в состояние золя. Это — обратимые коллоиды. Обратимое растворение может быть вызвано даже у необратимых коллоидов, если их соединить с обратимыми. Например, если прибавить к раствору соли серебра небольшое количество желатины, белка или некоторых продуктов распада его и восстановить серебро до образования золя, то степень дисперсности коллоидного серебра в этих условиях получения оказывается более высокой и золь менее подвержен влияниям факторов, вызывающих коагуляцию. Золь серебра можно путем выпаривания превратить в твердый продукт, который обладает способностью снова растворяться в воде, образуя золь. Вследствие того защитного действия, которое в подобных случаях оказывают обратимые коллоиды, повышая стабильность необратимых, их называют защитными коллоидами. При применении защитных коллоидов золи могут быть получены с более высокими концентрациями, чем обычно. Примером концентрированного золя, получаемого с применением защитного коллоида, является медицинский препарат колларгол, содержащий свыше 70% серебра. [c.391]


    ОТНОСЯТСЯ различные электролиты. При добавлении электролита гранула адсорбирует ионы противоположного знака, что и вызывает нейтрализацию ее зарядов. Чем меньше зарядность коагулирующего иона, тем больше ионов требуется на коагуляцию коллоида. При сливании двух коллоидных растворов, гранулы которых имеют противоположный электрический заряд, происходит взаимная коагуляция коллоидов. Для коагуляции гидрофильных коллоидов, помимо нейтрализации электрического заряда гранул, необходимо разрушить гидратную оболочку при помощи дегидратирующих средств (спирта, концентрированных растворов солей). Лиофильные коллоиды коагулируют значительно труднее добавление этих коллоидов к гидрофобным увеличивает стойкость последних таким образом, первые по отношению ко вторым обладают защитным > свойством. Коллоиды называются обратимыми, если осадок, выпавший из коллоидного раствора при добавлении растворителя, может снова переходить в жидкую фазу с образованием золя. Необратимые коллоиды при добавлении растворителя не переходят в жидкую фазу, но могут образовать золь при наличии ничтожных количеств электролита это явление получило название пептизации. [c.246]

    Как показали исследования, высокомолекулярные вещества, выделенные из раствора высаливанием, после отмывки их от электролитов могут быть снова переведены в раствор (явление обратимо). Коллоиды, которые при устранении фактора, вызвавшего коагуляцию, способны переходить из состояния геля в состояние золя, носят название обратимых коллоидов. Однако высокомолекулярные вещества могут при определенных условиях осаждаться и необратимо. Такое необратимое осаждение высокополимеров, в частности белков, иод влиянием высокой температуры, цри воздействии концентрированных кислот и щелочей, дубильных веществ, лучистой энергии называется денатурацией. При денатурации происходит не только осаждение полимеров, но и изменение их химической природы. Белки при денатурации становятся нерастворимыми и в большинстве случаев утрачивают способность к набуханию. [c.383]

    Нарушение устойчивости растворов ВМС при введении электролитов нельзя отождествлять с коагуляцией лиофобных коллоидов. Коагуляция золей происходит при введении малых концентраций электролита и представляет собой обычно необратимое явление. Выделение из раствора ВМС происходит при добавлении относительно больших объемов электролита, на 3...5 порядков превышающих порог коагуляции и не подчиняющихся правилу Шульце—Гарди. Процесс является обратимым, и после удаления из осадка электролита ВМС снова способно к растворению. [c.368]

    Для многих золей процесс коагуляции необратим. Такие коллоиды называются необратимыми. Коллоиды, легко подвергающиеся пептизации, называются обратимыми. [c.222]

    Описанное выше последовательное течение стадий набухания, растворения, застудневания, синерезиса и возможность обратного перехода от синерезиса к раствору (золю) свойственно не всем коллоидным системам. В этом отношении лиофильные коллоиды делятся на три группы обратимые, необратимые и не вполне обратимые. [c.25]

    И наконец, в тесной и неразрывной связи со всем вышеизложенным находится и третий признак растворов ВМС — это обратимость всех совершающихся в них процессов с изменением температуры, давления и концентрации. Напомним, что все эти процессы являются необратимыми для лиофобных (гидрофобных) коллоидов. Так, например, процесс коагуляции, необратимый для лиофобных золей, является обратимым для растворов ВМС. [c.176]

    И, наконец, в тесной и неразрывной связи со всем вышеизложенным находится и третий признак растворов ВМС — это обратимость всех совершающихся в них процессов с изменением температуры, давления и концентрации. Напомним, что все эти процессы являются необратимыми для лиофобных (гидрофобных) коллоидов. [c.329]

    П. П. Веймарн и В. Оствальд предложили рассматривать свойства дисперсных систем только с позиции их степени дисперсности, не учитывая гетерогенности. Более общие представления о свойствах коллоидных растворов были развиты Н. П. Песковым, который подразделял коллоиды на два класса к первым он отнес коллоиды, которые самопроизвольно диспергируют в растворителе, образуя коллоидные растворы. Если вызвать коагуляцию такой системы, то в коагуляте окажется много растворителя. После удаления электролита (коагулята) коагулянт, как правило, сохраняет способность вновь диспергировать в растворителе. Второй класс коллоидов, по Н. П. Пескову, — это системы, у которых коагуляция необратима, коагулят (осадок), как правило, не содержит дисперсной среды. При этом только вторая группа коллоидных растворов представляет собой типичные коллоиды, инертные по отношению к дисперсионной среде. Как это ни парадоксально, но вещества, получившие впервые в истории науки название коллоиды (гуммиарабик, белки, крахмал), оказались не настоящими коллоидами. Водные растворы этих веществ в отличие от типичных коллоидов представляют собой гомогенные термодинамически равновесные системы, устойчивые и обратимые, т. е. представляют собой истинные растворы макромолекул высокомолекулярных соединений (ВМС). Различие двух типов коллоидов связано в значительной мере с гибкостью и асимметричным строением макромолекул. Последние взаимодействуют с растворителем (дисперсионной средой) подобно низкомолеку- [c.382]

    Изучение свойств растворов высокомолекулярных соединений сыграло огромную роль в развитии коллоидной химии. Первые исследования диффузии, осмоса, оптических свойств коллоидов были проведены с растворами желатины, агара, целлюлозы, т. е. с растворами ВМС. При этом выяснилось, что растворы ВМС более устойчивы по сравнению с золями. В течение длительного времени это объяснялось высоким сродством растворенных веществ к растворителю (дисперсионной среде) и связанной с этим высокой сольватацией. Это нашло отражение в исторически сложившемся названии таких растворов — лиофильные золи или обратимые коллоиды в отличие от лиофобных золей — обычных (необратимых) коллоидных систем. Позднее была найдена истинная причина термодинамической устойчивости лиофильных золей — отсутствие поверхности раздела фаз и поверхностной энергии — их гомогенность. Было показано также, что, хотя свойства растворов высокомолекулярных соединений в значительной степени определяются их сродством к растворителю, доля растворителя, вошедшего в сольватные оболочки, не очень велика. Поэтому правильным следует считать термин растворы ВМС или молекулярные коллоиды , а не лиофильные золи . [c.435]


    Каждый золь может быть превращен в соответствующий гель. Многие гели (хотя далеко пе все) могут переходить обратно в золи этот процесс называется пептизацией. Исходя из таких свойств золей и гелей, различают обратимые коллоиды (золь 5 гель) и необратимые коллоиды (золь->-гель). [c.32]

    Образование студней имеет место у некоторых и лиофобных коллоидов. Однако характерной особенностью студней лиофобных коллоидов является то, что они самопроизвольно не переходят в состояние золя. Поэтому лиофобные коллоиды получили название необратимых коллоидов, а лиофильные — обратимых коллоидов. [c.207]

    Различные главы монографии имеют неодинаковую степень законченности. Наиболее закончены главы, посвященные дисперсионной и электростатической слагающим расклинивающего давления, теориям обратимой и необратимой коагуляции и теории агрегативной устойчивости лиофобных коллоидов. Главы с описанием адсорбционной и структурной слагающих расклинивающего давления отражают сложность теоретического подхода и законченность его в настоящее время для общего случая. [c.203]

    Можно сказать им создано целое направление прикладной коллоидной химии в пищевой технологии с участием большого числа сотрудников научно-исследовательского института коллоидной химии в Воронеже и других центрах. Совместно с С. Е. Хариным в книге Влияние коллоидов на процессы сахароварения им обобщены результаты исследования. Авторы предложили метод количественного определения растворимых в воде коллоидов, на основе которого осуществляется контроль процессов сахарного производства и оценивается эффект очистки диффузионного сока от обратимых и необратимых коллоидов. А. В. Думанский совместно с И. Я- Бень изучил свекловичный сок как коллоидную систему, дал коллоидно-химическую характеристику сахарной свеклы (совместно с Е. Ф. Симоновой), предложил очистку стоков сахарного производства путем вспенивания (совместно с П. М. Силиным и С. Е. Хариным). Им изучена связанная вода в хлебопекарных продуктах и коллоидно-химические процессы при сушке хлеба, при замочке кукурузы и др. [c.14]

    Если при температуре Гг желатину подержать долгое время, то вязкость возрастает до постоянного значения С. Если теперь быстро нагреть систему до прежней температуры, то изменение вязкости пойдет не по кривой СВА, а сначала по отрезку D, а затем, если выдерживать коллоид долгое время при Ti, по отрезку DE. Теоретически точки Е и А должны были бы совпадать, но вследствие изменения свойств желатины при термической обработке эти точки не совпадают. Такое явление называется гистерезисом. Петровская 29 показала, что такая необратимость зависит от температуры, при которой приготовлен золь. На рис. 102 кривая АВ характеризует влияние температуры на вязкость золя желатины. Так, если золь нагреть до температуры Tl, то его изменения вполне обратимы кривые ЛС[п = = /(Г)] как при нагревании, так и охлаждении совпадают если золь нагреть до температуры Гг, то кривые нагревания АЕ и охлаждения ED не совпадают, причем это несовпадение тем резче выражено, чем выше температура. [c.361]

    При этом коллоиды перемещаются к аноду или катоду и там осаждаются в зависимости от того, заряжены ли они относительно раствора положительно или отрицательно.. Коагулированный раствор называют гидрогелем, а некоагулированный — гидрозолем. Различают обратимые и необратимые гидрозоли, смотря по тому, превращаются ли они после коагуляции снова в гидрозоль или нет .  [c.115]

    Наличие зависимости степени обратимости адсорбции от состояния радиоактивного изотопа на поверхности адсорбента было показано Стариком и сотрудниками на примере Ра [ ]. Ионы Ра десорбировались со стекла значительно легче, чем коллоиды, когда в качестве десорбентов применялись растворы с тем же pH, при котором производилась адсорбция. Необратимость коллоидной адсорбции радиоактивного изотопа на катионообменном адсорбенте наблюдалась также для [ > ]. Однако нельзя считать общим правилом, что необратимость адсорбции указывает на коллоидное состояние радиоактивного изотопа. [c.51]

    Как превратить необратимый коллоид в обратимый Покажите это на примере лечебных препаратов металлического серебра. [c.173]

    Наличие зависимости степени обратимости адсорбции от состояния радиоактивного изотопа на поверхности адсорбента было показано Стариком и сотрудниками на примере Ра [ ]. Ионы Ра десорбировались со стекла значительно легче, чем коллоиды, когда в качестве десорбентов применялись растворы с тем же pH, нри котором производилась адсорбция. Необратимость коллоидной адсорбции радиоактивного изотопа на катионообменном адсорбенте наблюдалась также для 2г [c.38]

    В мелассе содержится от 4 до 6% веществ в коллоидном состоянии со средним радиусом частиц от 45 до 80 им (Н. И. Дерканосов и С. Т. Крылов). Различают необратимые и обратимые коллоиды. Первые после осаждения спиртом или спирто-эфирной смесью вновь не растворяются в воде, окрашены в интенсивный темно-коричневый цвет (обусловливают до 85% цветности мелассы) и содержат около 9% азота. Вторые (обратимые) коллоиды растворяются в воде, окрашены менее интенсивно, беднее азотом (около 4%). Основная масса коллоидов — обратимые. [c.23]

    Фрейндлих высказал мнение, что обратимость и необратимость коллоидной системы определяется взаимодействием дисперсной фазы с дисперсионной средой. Дисперсная фаза обратимых коллоидов молекулярно взаимодействует с дисперсионной средой и поэтому способна в ней растворяться. Исходя из этого, такие коллоидные системы Фрейндлих предложил также называть лиофиль-ными коллоидными системами (от греч. слова лиос — жидкость, фило — люблю). Дисперсная фаза необратимых коллоидов неспособна взаимодействовать с дисперсионной средой, а следовательно, и растворяться в ней. Поэтому эти системы Фрейндлих назвал лиофобными (от греч. слова фобе — ненавижу). В том случае, когда дисперсионной средой системы является вода, эти два класса можно называть соответственно гидрофильными и гидрофобными системами (от греч. слова гидра —вода). [c.26]

    В зависимости от отношения образующихся при седиментации осадков к воде (или соответственно другой жидкой фазе) коллоиды делятся на обратимые и необратимые. Осадки первых при соприкосновении с чистой водой вновь самопроизвольно переходят в нее с образованием золя. Так ведет себя, например, гуммиарабик. Напротив, осадки необратимых коллоидов при простом соприкосновении с жидкой фазой самопроизвольно в нее не переходят. Примерами необратимых коллоидов могут служить кремневая кислота, окись железа, Аз23.э и т. д.  [c.611]

    Сравнительное изучение типичных коллоидов и высокомолекулярных веществ показало принципиальное различие ряда их свойств. Как уже было указано, типичными свойствами коллоидных систем являются гетерогенность, поверхность раздела фаз, агрегативная и термодинамическая неустойчивость, необратимость. В противоположность типичным коллоидным системам работами Каргина и его сотрудников было показано, что растворы высокомолекулярных веществ — термодинамически обратимые молекулярные гомогенные (однофазные) системы, агрегативно устойчивые без стабилизаторов. Сами высокомолекулярные вещества отличаются способностью к самопроизвольному растворению при соприкосновении с хорошими растворителями, а растворы получаются устойчивыми и без стабилизатора. В этом отношении высокомолекулярные вещества стоят ближе к веществам, образующим истинные растворы. Однако в плохих растворителях или в нерастворяющей среде высокомолекулярные вещества способны давать дисперсии со свободными поверхностями раздела. Эти дисперсии по своим свойствам относятся к типичным микрогетерогенным и коллоидныр системам (например, синтетический латекс и дисперсии полимеризационных смол). [c.18]

    В рамках теории устойчивости коллоидов (ДЛФО) коагуляция может происходить с преодолением потенциального барьера отталкивания частиц, а может происходить и без его преодоления при наличии достаточно глубокой потенциальной ямы на дальних расстояниях между частицами. В первом случае возникает непосредственный (фазовый) контакт частиц. Частицы могут при этом спекаться за счет перекристаллизации дисперсной фазы в зоне контакта. Структуры с таким видом связи называются кристаллизационными. Процесс структурирования, как и коагуляция, имеет в этом случае необратимый характер. Дисперсные системы с кристаллизационной структурой обладают свойствами хрупкого твердого тела. Во втором случае (безбарьерной коагуляции) связь частиц значительно слабее и она вполне обратима, т. е. легко разрушается и снова восстанавливается, Соответственно этому и состояние системы способно обратимо изменяться. Разрушение связей между частицами, а следовательно, и разрушение структуры, может быть вызвано слабыми механическими воздействиями, например перемешиванием раствора, переливанием его в другой сосуд и т. д. В состоянии покоя разрушенные связи, а с ними и структурное состояние системы полностью восстанавливаются. Количество циклов разрушения и восстановления структуры ничем не ограничено. Способность структурированных систем к обратимым изотермическим разрушениям и восстановлениям структурного состояния называется тиксотропией. Внешним признаком разрушения структуры может быть заметное разжижение взвеси. Восстановление структуры при этом сопровождается ее загустеванием. Этот процесс может занимать достаточно большое время (минуты, часы), а может происходить и практически мгновенно. Частным проявлением тиксотропии служит зависимость вязкости взвеси от времени, если восстановление структуры происходит достаточно медленно. Мгновенное тик-сотропное восстановление структурного состояния и, соответственно, механических свойств дисперсных [c.677]

    Таким образом, по проявлению коллоидных свойств все полимерные системы разделяются на две группы. К первой группе относятся термодинамически обратимые полимерные системы, к-рые отличаются от их низкомолекулярных аналогов преимущественно малой кинетич. подвижностью частиц (молекул) и значительно большей продолжительностью жизни флуктуациоиных агрегатов, что приводит в нек-рых случаях к своеобразному проявлению гетерогенности процессов. Эта гетерогенность обусловлена кинетич. особенностями преобразования структурных элементов, а не наличием поверхности раздела фаз. По малой подвижности частиц такие системы напоминают классич. коллоиды (малые скорости диффузионных процессов, низкая проницаемость через ультратонкие по пористости фильтры, разделение на фракции в гравитационном поле центрифуги и т. п.). В то же время они существенно отличаются от истинных коллоидов, для к-рых характерны термодинамич. необратимость процессов и отчетливо выраженные адсорбционные (поверхностные) явления. [c.535]

    Пептизация. Некоторые коагулированные коллоиды (гумм арабик, желатина) при настаивании с водой самопроиэвольн переходят в коллоидное состояние. Они относятся к так назь ваемым обратимым коллоидам. Напротив, сульфиды и гидре окиси металлов являются необратимыми коллоидами — они н переходят самопроизвольно при соприкосновении с водой в рас твор. Однн ко если в чистую воду ввести незначительное количе ство ионов, которые адсорбировались бы да нным осадком, т последний молсет опять перейти в коллоидное состояние. [c.128]

    Коагуляция гидрофильных коллоидов представляет собой обратимый процесс. Осадки гидрофобных коллоидов нельзя перевести в коллоидно-растворенное состояние без воздействия на них электролита. Коагуляция гидрофобных коллои-Рис. 14. Коагулирова- дов — процесс необратимый. Осадок ние с помощью элект- такого коллоида можно перевести в ролета коллоидно-растворенное состояние, [c.82]

    Весьма интересным и чрезвычайно важным в практическом о в-ношении является то, что возможно значительно увеличить стой кость растворов лиофобных коллоидов прибавлением к ним небольших количеств лиофильных коллоидов. При этом необратимые коллоиды превращаются в обратимые. Если, например, к коллоидному раствору золота или серебра прибавить раствор желатины или гз мми-арабика, то после коагуляции эти металлы вновь могут быть переведены в коллоидный раствор без прибавления каких-либо пептизаторов. Частицы лиофобных коллоидов обволакиваются оболочкой лиофильного коллоида и этим приобретают более устойчивые свойства последнего. Лиофильные коллоиды во многих случаях оказывают указанное защитное (стабилизирующее) действие также на суспензии и эмульсии, что практически используется в аптечной работе при изготовлении соответствующих лекарственных форм. Стабилизаторами при этом обычно являются гумми-арабик, желатоза, трагакант, крахмальный клейстер. [c.243]


Смотреть страницы где упоминается термин Коллоиды обратимые и необратимые: [c.7]    [c.126]    [c.142]    [c.142]    [c.538]    [c.308]    [c.360]    [c.313]    [c.18]    [c.171]   
Учебник общей химии (1981) -- [ c.335 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоиды



© 2025 chem21.info Реклама на сайте