Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение инсулина и связь строения с активностью

    По вопросу о связи между строением инсулина и его биологической активностью, а таклсе о значении отдельных частей молекулы инсулина для проявления активности имеются довольно обширные сведения. Так, отщепление С-концевого остатка цепи В бычьего инсулина (аланин), которое может быть осуществлено мягкой обработкой карбоксипептидазой [951, 1614] или трипсином [951], не сопровождается потерей гормональной активности. Напротив, отщепление С-концевого остатка цепи А (аспарагин) приводит к резкому снижению активности [951, 1614]. Дез-(Азр 21, А1а > )-инсулин был очищен с помощью противоточного распределения и охарактеризован аминокислотным анализом. Активность этого соединения в судорожном тесте на мышах составляла 5% (1,1—1,2 М. Е./жг) активности природного инсулина [2139]. [c.471]


    Атомы цинка расположены на оси симметрии 3-го порядка и связаны с тремя имидазольными кольцами гистидинов В-10. Роль атомов цинка не совсем ясна. Гексамеры легко образуют ромбические кристаллы даже внутри панкреатических клеток, синтезирующих инсулин. Структура инсулина воплощает в себе основные особенности строения олигомерных ферментов, обладающих циклической или диэдрической симметрией. Как и в случае гексамера инсулина, центральные части таких молекул часто открыты и торчащие боковые группы аминокислотных остатков (в случае инсулина имидазольные группы) образуют как бы гнезда , в которые могут входить ионы или молекулы, регулирующие активность белков. Однако функциональная роль цинка при действии инсулина остается пока неизвестной. [c.293]

    К пептидным гормонам относятся инсулин, продуцируемый поджелудочной железой, регулирующий метаболизм углеводов, жиров и белков, содержащий 51 аминокислотный остаток секретин, вырабатываемый в желудочно-кишечном тракте, определяющий секреторную функцию желудочно-кишечного тракта, содержащий 21 аминокислотный остаток в передней доле гипофиза вырабатываются адренокор-тикотропин (34 аминокислоты), контролирующий активность коры надпочечников, пролактин (198 аминокислот), влияющий на рост грудных желез и секрецию молока в задней доле гипофиза вырабатываются вазопрессин (9 аминокислот), действующий как диуретик и сосудосуживающее, и окси-тоцин (9 аминокислот), стимулирующий сокращение гладкой мускулатуры. Это только иллюстративный перечень гормонов пептидной структуры — их значительно больше, многие из них еще изучены не полностью, как в плане строения, так и функциональности. Особенно важно и проблематично исследование связи их строения с активностью. Данные по связи структура — активность позволяют иногда получать синтетические полипептиды с активностью, превосходящей природные. Так, варьируя аминокислотный состав нейрогипофизных гормонов (схема 4.4.1) было получено около 200 аналогов, из которых один, [4-ТИг]-оксито-цин оказался высокоактивным. [c.81]

    Период с 1944 по 1954 г. был ознаменован развитием аналитических методов, современной техники разделения веществ, а также выяснением строения белков. Базой для дальнейшего развития и усовершенствования методики синтеза пептидов явилось введение в практику исследовательской работы хроматографии на бумаге, препаративной колоночной хроматографии, значительно более широкое применение электрофореза и противоточ-ного распределения и, наконец, выяснение структуры оксито-цина В. дю Винье и Г. Таппи и установление строения инсулина Ф. Сэнджером. После того как был успешно завершен синтез окситоцина, основные усилия исследователей были направлены на получение других биологически активных полипептидов. Это характерно для химии пептидов и на сегодняшний день. В течение всего лишь нескольких лет некоторые биологически активные полипептиды были синтезированы в таких количествах, что стало возможным проводить их фармакологическое и медицинское изучение. Эти соединения в настоящее время начинают находить терапевтическое при.менение. Синтез аналогов этих пептидов сыграл важную роль в понимании связи между строением и действием биологически активных полипептидов. [c.8]


    Б. X, сформировалась как самостоятельная область во 2-й пол. 20 а на стыке биохимии и орг, химии, на основе традиционной химии прир. соединений. Ее развитие связано с именами Л. Полинга (открытие а-спирали как одного из главньп элементов пространста структуры полипептидной цепи в белках), А. Тодда (выяснение хим. строения нуклеотидов и первый синтез динуклеотида), Ф. Сенгера (разработка метода определения аминокислотной последовательности в белках и расшифровка с его помощью структуры инсулина), Дю Виньо (хим. синтез биологически активного гормона окситоцина), Д, Бартона и В. Прелога (конформационный анализ), Р. Вудворда (полный хим. синтез мн. сложных прир. соединений, в т.ч. резерпина, хлорофилла, витамина В] ) и др. крупных ученых. [c.288]

    Гликоген — это эквивалент крахмала, синтезируемый в животном организме, т. е. это тоже резервный полисахарид, построенный из остатков а-глюкозы встречается гликоген и в клетках многих грибов. У позвоночных гликоген содержится главным образом в печени и мышцах, иными словами в местах высокой метаболической активности, где он служит важным источником энергии. Обратное его превращение в глюкозу регулируется гормонами, главным образом инсулином (гл. 9). По своему строению гликоген весьма схож с амилопектином (рис. 3.13), но цепи его ветвятся еще сильнее. В клетках гликоген отлагается в виде крошечных гранул, которые обьгано бывают связаны с агра-нулярным (гладким) эндоплазматическим ретикулумом (рис. 5.12). [c.117]

    НОЙ ИЗ ИХ частей. Многочисленные примеры различий в строении внутриклеточных участков рецепторов, отвечающих за их эф-фекторные функции, приведены в гл. 2. Напротив, внеклеточные участки различных по специфичности рецепторов обладают, видимо, сходством строения (общие принципы структурной организации, способов формирования активных центров, первичной структуры). Эти данные подробно обсуждаются в гл. 3. В некоторых случаях различия между рецепторами связаны с их углеводным компонентом. Так, в отличие от рецептора инсулина на мембранах адипоцитов, содержащего углеводный компонент, [c.14]


Смотреть страницы где упоминается термин Строение инсулина и связь строения с активностью: [c.470]    [c.75]    [c.75]    [c.6]    [c.290]   
Смотреть главы в:

Пептиды Том 2 -> Строение инсулина и связь строения с активностью




ПОИСК





Смотрите так же термины и статьи:

Инсулин

Инсулин строение

Инсулинома



© 2025 chem21.info Реклама на сайте