Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рецепторы функциональная роль

    Все биологические мембраны, включая плазматическую мембран и внутренние мембраны эукариотических клеток, имеют общие структурные особенности они представляют собой ансамбли липидных и белковых молекул, удерживаемых вместе с помощью нековалентных взаимодействий. Благодаря этим взаимодействиям поддерживается структурная целостность мембран Однако сами по себе клеточные мембраны являются подвижными, текучими структурами и большинство входящих в их состав молекул способны перемещаться в плоскости мембраны. Как показано на рис. 6-1, липидные молекулы образуют непрерывный двойной слой толщиной около 5 нм. Липидный бислой - это основная структура мембраны, которая и создает относительно непроницаемый барьер для большинства водорастворимых молекул. Белковые молекулы как бы растворены в липидном бислое. С их помощью выполняются разнообразные функции мембраны. Одни мембранные белки обеспечивают транспорт молекул внутрь клетки или из нее, другие являются ферментами и катализируют ассоциированные с мембраной реакции. Еще один класс белков осуществляет структурную связь плазматической мембраны с цитоскелетом, с одной стороны, и(или) с внеклеточным матриксом либо с соседней клеткой - с другой. Отдельную группу составляют белки, выполняющие роль рецепторов для получения и преобразования химических сигналов из окружающей среды. Как и следовало ожидать, мембраны асимметричны оба их слоя различаются по липидному и белковому составу, что отражает, по-видимому, функциональные различия их поверхностей. [c.349]


    Участие компонентов биомембран в осуществлении и регулировании метаболических процессов в клетке. Общая характеристика процессов передачи информации в клетке. Понятие о первичных и вторичных мессенджерах. Классификация, особенности структурно-функциональной организации мембранных белков-рецепторов. Характеристика аденилатциклазного и фосфо-инозитидного пути передачи сигнала в клетку. Роль ионов в осуществлении метаболических процессов с участием мембран. Адсорбционный тип регуляции метаболизма. Понятие о метаболоне, физиологическое значение его образования. Пространствен-но-структурная организация ферментных систем клетки (на примере гликолитического комплекса и цикла Кребса), Экспериментальные исследования взаимодействия ферментов гликолиза с различными структурными компонентами клетки. Модели структуры гликолитического комплекса в скелетных мышцах и на внутренней поверхности мембран эритроцитов. Эстафетный механизм работы ферментов в клетке. Механизмы регулирования функциональной активности векторных ферментов биомембран. Пути нейрогуморальной регуляции функций клеток. [c.284]

    Структурную основу мембран составляют липиды, а функциональную роль выполняют белки, которые являются ферментами, транспортными белками, рецепторами, переносчиками, образующими поры, каналы и насосы. Существуют две основные теории строения мембран. [c.107]

    К числу фундаментальных проблем науки о биологических мембранах принадлежит проблема клеточных рецепторов. Эти важнейшие мембранные белки начали глубоко изучаться лишь в последние годы, однако за короткий срок накоплен обширный фактический материал, изучение которого существенно для понимания функциональной роли биологических мембран и биологии клетки в целом. [c.5]

    В настоящей книге впервые систематически излагаются основные сведения о клеточных рецепторах их структурной организации, особенностях строения функционально значимых доменов, молекулярной генетике клеточных рецепторов, биосинтезе и катаболизме. Большое внимание уделено функциональной роли клеточных рецепторов в регуляции биохимических процессов, в том числе транспорта в клетку метаболитов, клеточной пролиферации, экспрессии генов, регуляции, биосинтеза белка по типу обратной связи . Перечисленные проблемы в качестве составной части входят в учебные планы университетов и медико-биологических факультетов медицинских институтов по биохимии и биофизике или самостоятельного курса — биохимия мембран. [c.5]


    Функциональная роль полипептидных цепей. Если молекула рецептора построена из нескольких различающихся по строению полипептидных цепей, их вклад в организацию активного центра рецептора, равно как участие в реализации эффекторных свойств, может быть неодинаков. Это положение иллюстрируют данные о строении рецептора инсулина. Одна из цепей этого белка (а) участвует в образовании активного центра, в то время как другая (Р) отвечает за эффекторные свойства рецептора. В других рецепторных белках разноименные полипептидные цепи совместно участвуют в формировании активного центра рецептора (см. табл. 1). [c.15]

    Функции мембран. Мембраны — это высокоорганизованные структуры, отграничивающие внутреннее пространство клетки или ее отсеков, построенные из белков и липидов. Мембраны отделяют клетки от окружающей среды, обладают избирательной проницаемостью, содержат специфические транспортные системы. Внутренние мембраны клеток отграничивают органеллы и формируют обособленные внутриклеточные отсеки — компартменты, что обеспечивает функциональную специализацию клетки. Мембраны играют центральную роль в системе межклеточных взаимодействий. В них располагаются рецепторы, воспринимающие химические, физические и другие внешние сигналы. Некоторые мембраны сами способны генерировать сигнал (химический или электрический). Мембраны участвуют в процессах превращения энергии (фотосинтез, окислительное фосфорилирование). [c.100]

    В гл. 1 и 2 обсуждались вопросы, связанные с функциональной ролью внутриклеточных доменов рецепторов различной специфичности и существованием у некоторых внутриклеточных доменов структурной и функциональной автономии. Появляясь [c.82]

    Как указывалось ранее, аксон может преодолеть большое расстояние до своей мишени, минуя бесчисленные клетки-мишени, на которые он не реагирует. Имеются два предположения, касающиеся направленного роста, которые, опять же, не исключают друг друга либо аксон ведут микрофиламенты (но неясно, как они прокладывают такой специфичный маршрут), либо, согласно Сперри, он растет против химического градиента, создаваемого мишенью, который и есть тот специфический сигнал, сравнимый, возможно, с сигналом хемотаксиса. В любом случае аксон находит и распознает свою мишень. По селективности данный процесс аналогичен взаимодействию рецептора и лиганда или антигена и антитела однако это взаимодействие непостоянно. На пленках клеточных культур показано, что растущие нейриты находятся в постоянном движении, вырастая и снова втягиваясь, как бы проверяя и зондируя поверхность клетки-мишени перед тем, как образовать постоянный контакт. Специфичность взаимодействия также неабсолютна если клетки-мишени повреждаются, синапсы могут образоваться с клетками других типов. Вот, что обнаруживалось в экспериментах с мозжечком афферентные волокна мозжечка обычно образуют синапсы с дендритами гранулярных клеток при селективном повреждении последних они образуют функциональные синапсы с отростками клеток Пуркинье (см. также гл. 12). Генетически детерминированная химическая специфичность синапсов (жесткость), таким образом, неабсолютно выполняемое свойство оно реализуется достаточно гибко (в этом случае говорят о синаптической пластичности), что предполагает существование механизмов переориентации, возмущающих генетический пробел. При этом существенную роль играет активность или строение синапса. Важная роль сенсорного ввода при создании функциональной нервной системы была продемонстрирована выдающимися экспериментами Хубеля и Визеля на оптической системе кошки. [c.331]

    Перечисленными функциями роль белков в живой природе не исчерпывается. Некоторые из них будут изложены ниже в этом параграфе, другие будут рассмотрены в различных разделах курса. Однако уже из приведенных примеров видно, что функциональные белки обладают уникальной способностью с высокой степенью избирательности взаимодействовать с вполне определенными партнерами или, как принято говорить в биохимии, узнавать этих партнеров. Так, ферменты узнают совершенно определенные вещества — субстраты, превращение которых они катализируют рецепторы узнают определенный гормон или нейромедиатор, транспортные белки — те компоненты, перенос которых через клеточную мембрану они должны обеспечить, и т.п. [c.38]

    Клеточная мембрана — неотъемлемый элемент любой клетки. Ее роль в первую очередь состоит в том, чтобы отгородить содержимое клетки от окружающей среды, сосредоточить в небольшом объеме простран,ства все необходимые информационные и функциональные структуры, а у клеток эукариот, кроме того, разделить внутреннюю часть клетки на различные функционально автономные отсеки-ядро, митохондрии и ряд других. Во внешней плазматической мембране клетки функционируют транспортные белки, рецепторы и связанные с ними белковые системы преобразования полученных сигналов. Но структурную основу мембран составляют липиды. [c.55]

    Конечно, вызывает недоумение тот факт, каким образом вещества со столь сильно отличающейся структурой могут вызывать ощущение сладкого вкуса. Для объяснения механизма возникновения вкусового ощущения на молекулярном уровне было предложено несколько теорий. Эти теории основываются на таких представлениях, как природа функциональных групп, входящих в соединение, вкус которого рассматривается химические и физические свойства молекул, считаемых сладкими образование специфических внутримолекулярных водородных связей и (или) наличие белка, играющего роль привратника, который управляет подходом к рецепторам вкусового бугорка. [c.202]


    Таким образом, основная роль нейрорецепторов сводится к созданию специфических информационных входов, организующих единый функциональный ансамбль нейронов. Именно совокупность рецепторов определяет лицо клетки и ее реакции на поступление разнообразных химических сигналов. [c.261]

    Как видно из приведенных в табл. 25.3.1 данных, в миелине отношение липид белок выше, чем в других мембранах это соответствует специфической функциональной роли миелина. Напротив, для протекания высокоэффективных процессов окисления во внутренней мембране митохондрий необходимо присутствие нескольких ферментов и отношение липид белок у нее ниже. В мембране эритроцитов содержится относительно большое количество углеводов. Основной гликопротеин мембраны эритроцитов, гликофорин, как было показано [6], ориентирован на поверхности мембраны так, что Л -концевая часть его полипептидной цепи, несущая все ковалентно связанные остатки углеводов, выступает во внешнюю среду такими поверхностными олигосахаридами являются некоторые групповые антигены крови и рецепторы, включая рецептор вируса гриппа. Схематическое изображение возможного расположения белков, липидов и углеводов в биологической мембране, приведенное на рис. 25.3.1, основано на жидкомозаичной модели [7]. Полярные молекулы липидов образуют бимолекулярный слой (см. разд. 25.3.3), тогда как белки могут быть или связаны с поверхностью (так называемые внешние белки), или внедрены в бислой (так называемые внутренние или интегральные белки). В некоторых случаях белок может пронизывать бислой. Жидкомозаичная модель завоевала всеобщее признание предполагают, что мембрана в физиологических условиях является текучей, а не статичной. Так, липидные и белковые компоненты в изолированных [c.109]

    Обе формы сенситизации имеют общую морфологическую и нейрофизиологическую основу, но их молекулярные механизмы принципиально различаются. В основе кратковременной сенситизации лежит независимое от текушей экспрессии генов и обратимое повышение уровня фосфорилирования группы белков в сенсорных нейронах сифона, обусловленное кратковременной активацией аденилапшклазы, сопряженной с пресинаптическими рецепторами 5-НТ. Природа и функция большинства этих белков неизвестна, однако одним из них является белок 5-НТ-чувствительного-канала уменьшение проводимости которого и составляет основу механизма сенситизации. При долговременной сенситизации фосфорилирование тех же белков повышено в течение срока, соответствующего длительности самой сенситизации, причем этот эффект, как и сама сенситизация, полностью блокируется при ингибировании текущей экспресии генов в период обучения. Анализ индивидуальных, вновь синтезированных при обучении белков методом двумерного электрофореза позволил обнаружить избирательное повышение скорости синтеза нескольких белков, но их природа и функциональная роль пока неизвестны. [c.386]

    Интерес к функциональной роли СЗЬ-рецептора В-лимфоцитов в иммунном ответе определяется тем, что этот рецептор начинает экпрессироваться В-лимфоци-тами мыши примерно к 14-му дню после рождения в период функционального созревания В-клеток. Именно в этот период под влиянием антигена В-лимфоциты способны превратиться в аитителопродуцирующие клетки. [c.210]

    Посредством СЗЬ-рецептора на поверхности лимфоцита могут фиксироваться иммунные комплексы, связавшие комплемент. При этом существенное значение имеет содержание комплемента в среде. В случае избытка комплемента при 37° С происходит быстрое высвобождение с поверхности лимфоцитов иммунных комплексов, фтп<си-рованных через СЗЬ (см. гл. 8). Только будущие 11сслед0-ванпя позволят достоверно оценить функциональную роль различных по специфичности рецепторов для модифицированного СЗ (см. рис. 51). [c.210]

    Известно несколько сообщений о наличии на поверхности лимфоцитов человека рецептора для lq компонента комплемента. Ксеногенные эритроциты, нагруженные lq, образуют розетки с лимфоцитами, находящимися в циркуляции (А. Tenner, N. ooper, 1980, 1981 R. Gupta et al., 1978). Каких-либо достоверных сведений о природе и функциональной роли рецепторов не получено. [c.211]

    Известно, что клетка млекопитающих способна синтезировать ориентировочно З-Ю" различных белков и экспрессировать до 5-10 этих белковых молекул на плазматической мембране в любой момент времени. Совершенно очевидно, что наши представления о биологии мембран лимфоцитов далеко не полны. Это особенно четко видно на примере исследования связей между мембранными структурами и их функциями. Например, в предпринятых недавно попытках создать каталог компонентов мембран выявилось большое число молекул с неизвестной функцией, так называемых молекул- сирот . Эти молекулы были идентифицированы при использовании некоторых схем очистки, но их функциональная роль остается неясной. Обычно при иммунопреципитации с использованием моноклональных антител (МА) против целых клеток нлп мембранных везикул выявляется новая детерминанта, и после этого соответствующие МА пытаются использовать в качестве индукторов или ингибиторов в каком-либо тесте функциональной активности лимфоцитов. Модулируемые МА проявления активности лимфоцитов позволили выяснить связь некоторых неисследованных ранее компонентов плазматических мембран с физиологическими процессами. Примерами таких компонентов мембран могут служить молекула ЬуЬ 2 (ЗиЬЬагао, Мо51ег, 1982), семейство высокомолекулярных гликопротеинов Ьу5 (Уакига е1 а ., 1983) и Т11-рецептор (эритроцитарный) (Меиег е а1., 1984), Однако функции большинства охарактеризованных к настоящему времени мембранных компонентов остаются неизвестными. [c.173]

    Поскольку при переходе в возбужденные состояния (синглетные и триплетные) энергия молекул повышается, последние приобретают химические свойства, которых не было у невозбужденных молекул [67, 67а]. Изменения значений рА а функциональных групп при переходе в возбужденное состояние могут приводить к диссоциации протонов или к их присоединению. Диссоциация на ионы или радикалы иногда сопровождается разрывом связей. Могут протекать реакции фотоприсоединения и фотоотш,епления, а также изомеризация молекул, играюш,ая важную роль в функционировании зрительных рецепторов. Возбужденные молекулы могут стать сильными окислительными агентами, способными принимать атомы водорода или электроны от других молекул. Примером такого рода служит фотоокисление ЭДТА рибофлавином (подвергающимся фотовосстановлению, как показано на рис. 8-15). Более важным с точки зрения биологии процессом является фотосинтез, в ходе которого возбужденные молекулы хлорофилла осуществляют фотовосстановление других молекул, временно оказываясь при этом в окисленном состоянии. К сожалению, ценность исследования фотохимических реакций сильно снижается возможностью протекания множества параллельных реакций, зачастую приводящих к образованию огромного количества разных фотохимических продуктов (достаточно взглянуть на тонкослойную хроматограмму продуктов распада рибофлавина, рис. 2-34). [c.33]

    Роль мускаринового ацетилхолинового рецептора не ограничивается регуляцией каналов для ионов щелочных металлов, но, как мы уже показали в гл. 2, он влияет на фосфорилирование и дефосфорилирование фосфатидилинозита и сти.мулирует образование сОМР. Активность рецептора приводит к увеличению внутриклеточной концентрации свободного Са +. Молекулярная и функциональная связь этих наблюдений еще неясна. [c.269]

    О нризнапии Райтом определенной роли структуры молекулы в процессе восприятия запаха свидетельствует, например, его предположение о том, что пахучее вещество, кроме низкочастотных колебаний, ...должно иметь одну или более функциональные группы, обеспечивающие его правильную ориентацию у поверхности рецептора [359, стр. 650]. [c.173]

    За прошедшее время, в особенности с конца 40-х годов, представления об обмене и функции КА чрезвычайно расширились и углубились биохимия их стала одной из наиболее интенсивно разрабатываемых областей, проникшей фактически во все разделы физиологии и патологии, ставшей не только существенной частью, но как бы своеобразным фоном , тембром многих актуальных глав современной нейрохимии, нейроэндокринологии, психофармакологии и др. Особое место занимает биохимия КА в учении о периферической и центральной медиации нервных импульсов, в биохимической фармакологии этих процессов, в вопросах взаимоотношения гормонов, медиаторов и нейросекретов, в проблеме структуры и функции рецепторов и в ряде других актуальных вопросов нейрохимии и нейроэндокринологии. В то же время нельзя не указать, что нейрохимия и нейроэпдокринология, так же как и общая физиология и патология, в своих методологических подходах и концепциях только частично используют тот фактический и теоретический багаж, которым располагает в настоящее время биохимия КА. Процессы обмена КА, их биосинтез и превращение, всесторонне изучаемые и уже довольно детально изученные с точки зрения участвующих в этих процессах ферментов и образующихся метаболитов, хотя и привлекаются нейрофизиологами, нейрохимиками и нейрофармакологами для анализа регуляторных процессов, но превращение КА все еще часто рассматривается в аспекте только образования и инактивирования активного вещества (гормона, медиатора) без достаточного использования некоторых новых представлений о роли этого обмена, и в частности нашей концепции о функциональном обмене [c.165]

    Характер поверхностных рецепторов определяется гепатическими факторами, клетки сходного типа простейших многоклеточных тканевых структур способны к образованиго агрегатов, и тогда между соприкасающимися поверхностями клеток образуются специализированные контакты. Клетки разных типов в смешанном агрегате способны к сортировке. Здесь, по-видимому, играют роль адгезивные свойства поверхности, связанные с рецепторными компонентами. В многоклеточных тканевых структурах клетки разных типов связаны между собой в единую функциональную систему. Объединение клеток зависит от состояния контактирующих поверхностей (проницаемость, пиноцитоз). Нарушение состояния контактов равнозначно нарушению проницаемости, поэтому состояние контактов имеет огромное значение для регуляции внутриклеточного метаболизма и пролнферативных процессов. [c.8]


Смотреть страницы где упоминается термин Рецепторы функциональная роль: [c.4]    [c.22]    [c.68]    [c.98]    [c.68]    [c.630]    [c.75]    [c.17]    [c.36]    [c.72]    [c.205]    [c.84]    [c.426]    [c.123]    [c.115]    [c.17]    [c.124]    [c.339]    [c.569]    [c.329]    [c.630]    [c.243]    [c.101]    [c.173]    [c.339]    [c.569]    [c.87]   
Молекулярная иммунология (1985) -- [ c.205 ]




ПОИСК







© 2025 chem21.info Реклама на сайте