Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Установление строения

    Химические методы установления строения основываются на проведении с помощью реагентов таких реакций, которые позволяют судить о наличии определенных атомных группировок (функциональных групп) или ионов в молекуле исследуемого соединения. Физические методы установления строения получают все большее развитие. С их помощью устанавливается не только строение исследуемого соединения, но также оказывается возможным определить детали структуры молекулы, например размеры молекулы, атомные расстояния и углы между связями. Физические методы определения строения имеют не только большие возможности по сравнению со старыми методами классической химии, но также позволяют значительно сократить время исследования. В случае же сложно построенных молекул старые методы установления строения вообще бессильны. [c.132]


    Метод инфракрасной спектроскопии широко используется для установления строения первичных нефтяных неуглеводородных компонентов. Число возможных колебаний большой асимметричной молекулы настолько велико, что математическая обработка зависимости формы колебаний от молекулярной структуры в настоящее время практически невозможна. Поэтому единственно [c.205]

    Определенный интерес представляло установление строения н-парафиновых углеводородов вышеуказанных фракций, чему и посвящено данное исследование. [c.125]

    Метод гидролиза широко применяется для установления строения различных природных сложных эфиров, например восков. [c.533]

    Битуминозные угли представляют собой твердые плохо растворимые вещества, структура которых, состоящая в основном из ароматических соединений, до сих пор изучена далеко не полностью. Можно ожидать, что установление строения угля позволит разработать новые процессы его эффективного использования. Выяснению химической природы угля препятствует, однако, его низкая растворимость, обусловленная следующим а) уголь представляет собой комплекс поперечно связанных макромолекул б) уголь стабилен за счет наличия прочных водородных связей, особенно в случае связывания за счет фенольных групп в) силы физического притяжения, обусловленные высокой степенью ароматизации угля, дают дополнительный связующий эффект. [c.301]

    Классические работы Лебедева [185 —187 J по избирательному каталитическому гидрированию олефинов послужили отправной точкой для развития и применения этой реакции как метода установления строения непредельных соединений и анализа многокомпонентных смесей этиленовых углеводородов. В основу этого метода была положена различная прочность кратных связей у олефинов разного строения. Сопоставление кинетических кривых гидрирования многокомпонентных смесей олефинов неизвестного состава с кинетическими кривыми эталонных смесей олефинов позволило составить представление о строении компонентов анализируемых смесей. Принципиальные научные положения Лебедева о применимости избирательного каталитического гидрирования к решению структурных вопросов в области непредельных органических соединений были распространены нами на реакцию гидрогенолиза сераорганических соединении. Проведенные экспериментальные исследования по изучению закономерностей протекания реакции гидрогенолиза индивидуальных сераорганических соединений разного строения и их смесей полностью подтвердили наше предположение о возможности применения избирательного каталитического гидрирования для установления строения сераорганических соединений. [c.410]


    Эту реакцию можно применить для установления строения ами-ноз  [c.445]

    Получение новых высокополимерны.х соединений и установление строения их приближает нас к познанию природы и структуры многих очень сложных природных соединений, например белков, полисахаридов, сложных производных политерпенов, различных растительных продуктов еще не известного строения. Изучение химии органических и элементоорганических высокополимерных соединений позволит расширить пределы познаваемого нами мира. [c.588]

    При установлении строения органических соедииеиий хлорангидридами кислот пользуются для того, чтобы определить число гидроксильных и первичных или вторичных аминогрупп, каждая нз которых присоединяет один ацильный остаток. [c.275]

    Выделение и установление строения полипептидов [c.383]

    Карбоновые кислоты пиридинового ряда с 1, 2 и даже 3 карбоксильными группами часто образуются при окислительном расщеплении алкалоидов и хинолиновых соединений они имели большое значение для установления строения алкалоидов. О названии и происхождении этих кислот можно судить из табл. 35. [c.1019]

    Полипептиды установленного строения 391 [c.391]

    Полипептиды установленного строения [c.391]

    Полипептиды установленного строения 393 [c.393]

    Эти реакции протекают очень гладко и имеют большое значение для установления строения циклических ненасыщенных сое,динений. [c.775]

    Определенный практический и теоретический интерес представляет установление строения гексагидроароматичес-ких углеводородов, входящих в состав фракции 95—122° суп-синской нефти, чему посвящено данное исследование. [c.66]

    При конденсации т/ ет-бутилхлорида с пропиленом образуются первичный продукт 2-хлор-4,4-диметилпентан и большее или меньшее количество (в зависимости от катализатора и условий) продукта его перегруппировки 2- и 3-хлор-2,3-диметилпентана. Как правило, в качестве побочных продуктов получаются децилхлориды пока еще не установленного строения, вероятно, в результате конденсации трет-гентилхлори-дов с пропиленом. Если вести реакцию в присутствии хлористого алюминия при —30°, то с выходом до 70% образуются гептилхлориды, среди которых около 45% приходится на долю 2-хлор-4,4-диметилпентана, остальную часть составляет З-хлор-2,3-диметилпентан с ничтожными примесями 2-хлор-2,3-диметилпентана. Подобные же смеси с выходами от 20 до 60% получались и при проведении реакции в присутствии хлорного железа (при —15°- —-10°), фтористого бора (при 10°), хлористого висмута, хлористого цинка, хлористого циркония (при комнатной температуре) и хлористого титана (при 50°) [18 . Наиболее высокое содержание 2-хлор-4,4-диметилпентана в продуктах реакции было получено при использовании в качестве катализатора хлористого висмута. [c.229]

    Нами было показано, что фракция 150—200° мирзаанской нефти содержит 23,6% гидроароматических углеводородов. Интересно было установить индивидуальную природу этих углеводородов, чему и посвящено данное исследование. Интерес к установлению строения гидроароматнческих углеводородов ряда декалина в мирзаанской нефти усугубляется тем, что в этой же нефти из конденсированных ароматичес- [c.83]

    Для установления строения ароматических углеводородов, входящих во фракцию 149—154°, эту фракцию в количестве 1,67 г окисляли перманганатом калия по Ульману [18]. Смссь органических кислот, полученных в результате окисления фракции, была разделена методом Тауш-Добрян-ского [19]. 13 продуктах окисления было установлено наличие бензойной, изо- и терефталевой кислот. [c.89]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]


    Топливные качества 1орючего и смазочные свойства нефтяных масел в значительной степени определяются количеством и индивидуальной природой, входящих в их состав парафиновых углеводородов. Поэтому установление строения нефтяных парафиновых углеводородов и их количественного содержания, помимо теоретического интереса, имеет и практическое значение. [c.125]

    В этом случае, однако, придется дегидратировать третичный спирт в присутствии кислотного катализатора, что может привести к некоторой перегруппировке углеродного скелета в связи с нахождением третичного углерода в а-полошении к карбинольной группе. Точное установление строения вещества, даже если его удается очистить, будет затруднительным. По тем же спобран ениям не рекомендуется проводить реакцию между реактивом Гриньяра и бициклооктаноном, так как дегидратация образующегося третичного спирта может привести к изменс нию углеродного скелета [c.517]

    В феноле примеси определяли методом газо-жидкостной хроматографии в кубовом остатке содержание фенола, и-изопропил- и л-изо-проненилфенола также определяли методом газо-жидкостной хроматографии, а остальные компоненты — тонкослойной хроматографией . В феноле были обнаружены окись мезитила (0,02%) и форон (0,01%). В кубовом остатке были обнаружены восемь компонентов установленного строения (дифенилолпропан, фенол, соединение Дианина, орто-пара- и орто-орто-изомеры дифенилолпропана, 2,4,4-три-метил-2 -оксифлаван, л-изопропил- и л-изопропенилфенол) и четыре неидентифицированных вещества. Сумма определенных компонентов составляла примерно 75%. Остальная часть, по-видимому, представляет собой трехъядерные (трис-фенолы I и II) и многоядерные фенолы, которые не разделяются при хроматографировании. [c.75]

    У] лерода содер>кится в нефти от 83 до 87 вес. %, водорода — от И до 15 вес. %. Остальные элементы обычно составляют в сумме не бо,1Ьше 1 вес. %, и только в случае тяжелых смолистых нефтей их соцержание может достигать 4—5%. Кислород в нефти входит в С0С7 ав нефтяных кислот и их производных и в меньшей степени — в состав фенолов. Азот образует преимущественно вещества основного характера — ациклические и циклические. Сера представлена в не(])ти органическими серусодержащими соединениями — меркаптанами, сульфидами, дисульфидами, тиофанами и другими. Накоиец, кислород и сера входят еще в состав особых соединений не вполне установленного строения — смолисто-асфальтовых веществ. [c.74]

    В области установления строения высокомолекулярных углеводородов, а также смолисто-асфальтовых, сернистых и других соединений нефти большое значение имели работы Черножу.кова, Крейна, Микешка, Бестужева, Сергиенко, Оболенцева и других. [c.523]

    После выделения углеводородов в чистом виде следующим, эта-ис1у нсследования является их идентификация. Идентификация. моятет быть химической (установление строения углеводорода путем синтеза и изучен1 я свойств его производных), физико-химиче-ско , которая основана либо на определении физико-химических кои-ста> т углеводорода — плотности, показателя преломления, рефрак-ци) . дисперсии — либо на определении его различных спектрог,. [c.26]

    Для установления строения боковой цепи нафтеновых кислот (ог ределенне числа ато.мов углерода Д1ежду карбоксильной группой 11-циклом) применяют ряд методов, из которых рассмотрим два наиболее важных. [c.98]

    Синтетическим путем было получено несколько очень высокомолекулярных органических веществ точно установленного строения. Одно из этих соединений близкое некоторым дубильным веществам, имеет состав С22оН 42058Н4Л2 и молекулярный вес 4021. По-видимому, по величине молекулярного веса оно занимает первое место среди всех органических соединений установленного строения (Э. Фишер). [c.13]

    В работах одного из авторов было показано, что при проведении каталитического гидрирования асфальтенов в мягких температурных условиях, при удачном выборе катализатора, можно вести процесс с высокой степенью избирательности [26]. В каче- тве катализатора был использован М1-Ренея, успешно использовавшийся для установления строения сераорганических соединений [27, 28]. Конечной целью избирательного каталитического гидрирования асфальтенов являлось осуществление гидрогенолитического разрыва связей С —8, С — О, С — N без нарушения структуры углеродного скелета и переход от гетероциклических соединений нефтп (углеводородов и смол) к углеводородам. [c.126]

    Выделением нефтяных кислот из керосиновых фракций бакинских нефтей, изучением их состава и свойств и установлением строения много занимался Аскан [4]. Представления о строении нафтеновых кислот в ранний период исследования были весьма общими и сводились к двум основным положениям, подтвержденным опытом 1) кислоты эти являются предельными, карбоксилсодержащими органическими соединениями 2) в основном эти кислоты являются производными нафтеновых (циклопарафиновых) углеводородов. [c.305]

    Для установления строения ненасыщенных карбоновых кислот применимо прежде всего окисление перманганатом калия нли озоном. В nepBOivi случае к двойной связи сначала присоединяются две гидроксильные группы. В образовавшихся при этом диоксикислотах окислению подвергаются атомы углерода, связанные с гидроксильными груп-нами, и происходит расщепление углеродной цепи в том месте, где была расположена двойная связь  [c.256]

    Бликке и Шитс [53 ] использовали скелетный никель для установления строения сераорганических соединений ряда тионафтена. [c.373]

    При гидрогенолизе некоторых других сераорганические соединений образуются углеводороды, которые трудно нолучить иными, синтетическими методами. Авторы указывают, что природа заместителей в тиофеновом ядре задютно сказывается на прочности его. Так, а, а -замещенные тиофены, где заместителями являются метил-, этил- и другие алкильные группы, имеющие нормальную цепочку, подвергаются гидрогенолизу легче, чем тиофены с заместителями тина третичного бутила. Эффект этот они объясняют экранированием атома серы. Доказательство строения индивидуальных сераорганических соединений, моделирующих сернистые соединення нефти с применением скелетного никеля, проводилось Д Меплановой [127]. Была показана возможность установления строения различных метил- и этилзамещенных бензтиофенов. [c.375]

    Избирательное каталитическое гидрирование особенно широко применяется для доказательства строения сераорганических соединений ряда бензтиофена и дибензтиофена. Наиболее часто используют для этих целей скелетный никелевый катализатор (A i Ренея) при низких температурах (50—150° С) [106 1. В этих условиях удается практически полностью осуществить разрыв связей С—S с последующим связыванием никелем серы, выделяющейся в виде сероводорода. В большей или меньшей степени идет при этом и насыщение водородом двойных связей в ароматических кольцах, но сравнительно мало затрагиваются простые связи С—С. Следовательно, нрп избирательном каталитическом гидрировании сернистых соединений происходит отщепление атома серы при сохраненип углеродного скелета исходных молекул, т. е. осуществляется переход от сераорганических соединений к соответствующим углеводородам. Установление строения полученных в этих условиях углеводородов является поэтому прямым ответом на вопрос о химической природе содержащихся в нефти сернистых соединений. Чем ниже температура гидрирования и продолжительность процесса, тем меньше задеваются двойные связи в бензольных кольцах. [c.417]

    Установлению строения изопреноидов, реликтовых алканов, моно- и полициклических неароматических углеводородов, а также тритерпанов и стеранов посвящены работы [96, 108, 109, 211]. Масс-спектры 120 аренов, бГь азотсодержащих гетероциклических систем рассмотрены в работе [212], а масс-спектры порфиринов и тетрапирролов рассмотрены в работе [213]. [c.138]

    Для дегидрирования сложных полиметиленовых углеводородов лучше, однако, пользоваться не никелем или платиной, а проводить этот процесс некаталитически нагреванием с серой или, еще лучше, с селеном [10]. Выделяющийся водород образует НдЗ или Н Зе, а исходное вещество превращается в ароматическое соединение. Этот способ оказывает неоценимые услуги при установлении строения новых соединений. Кадинен, например, при нагревании с серой превращается в кадалин (1,6-диметил-4-изопропилнафталин)  [c.257]

    Этот способ в настоящее время применяется для установления строения сложных соединений, содержащих серу. Так, например, С. Гаррис, Р. Мозинго и др. [60] применили обессеривание со скелетным никелевым катализатором для установления структуры биотина (I) и его производных  [c.384]

    Эти две реакции сьпрали большую роль в установлении строения органических соединений. Так, проведя окисление ненасьш(енного соединения и установив строение кетона и кислоты, можно выяснигь, где находится двойная связь в исходном алкене. [c.90]

    Этот метод был открыт Гарриесом и оказался очень ценным для установления строения сложных ненасыщенных соединений. На основании строения образующихся осквлхов (альдегидов, кетонов) часто оказывается возможным определить положение двойной связи в исходном олефине (см., например, стр. 257). [c.65]

    О.чо тоже является ценным сиособо.м установления строения кислот и положения в них д[зо ной связи  [c.257]

    Родственные связи этих порфиринов нагляднее всего показывает превращение пирропорфирина в мезопорфирин при введении остатка пропионовой кислоты в положение 6. Для дальнейшего исследования хлорофилла большое значение имело установление строения и синтез филлоэритрина, найденного в желчи Лебишем и Фишером, а также [c.980]

    Диметилпирон способен присоединять алкилирующие вещества (диметилсульфат, иодистый метил) с образование.м солей сильного основания, которые почти сравнимы с четвертичными аммони Выми солями (Керман). Для установления строения этих солей имеет большое значение их реакция с аммиаком, при которой гладко образуется 2,6-диметил-4-метоксипиридни (Байер). Следовательно, солям метилированного пирона соответствует формула (а)  [c.1013]

    Наибольшее значение для установления строения тропина имели ра боты Ладенбурга, Мерлинга и Вильштеттера последним п была пред ложена общепринятая теперь фор.мула тропина. [c.1071]

    Отсюда следует, что выяснение строения наркотина связано в первую очередь с установлением строения котарнина и опнановой кислоты. [c.1097]


Смотреть страницы где упоминается термин Установление строения: [c.75]    [c.6]    [c.358]    [c.216]    [c.16]    [c.282]   
Смотреть главы в:

Руководство по масс-спектрометрии для химиков-органиков -> Установление строения

Задачи и упражнения по органической химии -> Установление строения

Упражнения по курсу органической химии -> Установление строения

Химия природных соединений фенантренового ряда -> Установление строения


Органикум. Практикум по органической химии. Т.2 (1979) -- [ c.0 ]

Общий практикум по органической химии (1965) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте