Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки имидазольные группы

    Ко второй группе металлопротеинов относится ряд ферментов ферменты, содержащие связанные с молекулой белка ионы металлов, определяющих их функщгю,— металлоферменты (в процессе очистки металлы остаются связанными с ферментами) ферменты, активируемые ионами металлов, менее прочно связаны с металлами, но для проявления своей активности нуждаются в добавлении в реакционную среду определенного металла. Предполагают, что механизмы участия металла в акте катализа в обоих случаях, вероятнее всего, сходны ионы металла участвуют в образовании тройного комплекса активный центр фермента—металл—субстрат (Е—М—8), или М—Е—8, или Е—8—М. Есть доказательства, что в активном центре многих ферментов в связывании металла участвует имидазольная группа гистидина. [c.95]


    Следует напомнить об известных трудностях идентификации функциональных групп активных центров ферментов по величинам рК, полученным из изучения зависимости скорости реакции от pH. Во-первых, одна и та же группировка в белках разного строения может иметь неодинаковое значение рК из-за влияния соседних групп. Некоторую помощь в этом случае может оказать измерение теплоты диссоциации ионогенных групп, рассчитываемой по измерениям температурной зависимости рК. К сожалению, для холинэстераз эти термодинамические константы достаточно надежно не измерены. Согласно данным Шукудза и Шинода [122], теплоты диссоциации основной группировки ацетилхолинэстеразы эритроцитов и холинэстеразы сыворотки крови человека составляют соответственно 8,5 и 6,5 ккал1моль. Эти величины выше или ниже найденной для диссоциации имидазольной группы гистидина в других белках (6,9—7,5 ккал моль [123]). Если признать, что в обеих холинэсте-разах в качестве основной группировки активного центра выступает имидазол гистидина, то трудно понять столь существенное различие в величинах теплот диссоциации. Во-вторых, даже если измерение активности фермента при разных pH рассматривать в качестве своеобразного титрования функциональных групп активного центра, то полученные результаты нельзя безапелляционно считать отражением прямого участия этих групп в каталитическом акте. Можно представить, что ионы Н и ОН -среды выполняют свою функцию, вызывая не только протонизацию или депротонизацию функциональных групп активного центра, но также и более общую функцию создания и поддержания специфической для каждого фермента третичной структуры. Можно думать, что в создании третичной структуры фермента большую роль играют ионные связи между такими группировками, которые расположены вне активного центра и непосредственно не участвуют в реакции с субстратом. Такие ионогенные группировки при взаимодействии могут сближать друг с другом (или наоборот удалять друг от друга) определенные функциональные группы белка, которые непосредственно участвуют в каталитическом акте. Внешне эта непрямая роль кислотно-основных группировок фермента будет отражаться в форме обычной зависимости кинетических констант (и, V, Кт) от pH, но по существу такая зависимость не дает оснований для решения вопроса, является ли она следствием влияния pH на конформацию белка в районе активного центра или диссоциацию группировки, прямо участвующей в реакции с субстратами. [c.184]

    Имидазольные группы боковых цепей гистидина составляют часть активного центра многих ферментов. Как и другие основные группы белков, они могут также связывать ионы металлов [c.83]


    Ион цинка гораздо прочнее связывается с большинством органических лигандов, чем ион Mg + (табл. 4-2). Он имеет заполненную Зс -орбиту и стремится образовать четыре ковалентные связи тетраэдрической симметрии, часто с азот- или серусодержащими лигандами. В отличие от Mg +, который быстро и обратимо взаимодействует с ферментами, Zn + обнаруживает тенденцию к образованию прочных связей внутри металлоферментов. В настоящее время известна трехмерная структура некоторых металлоферментов. Во всех этих ферментах ион Zn + в активном центре окружен тремя имидазольными группами, а четвертая координационная связь остается свободной для взаимодействия с субстратом. Значительный интерес представляет также и тот факт, что второй атом азота имидазольной группы во многих случаях образует водородную связь с карбонильной группой в основной цепи пептида . Такое же свойство обнаружено и для атомов железа гемсодержащих белков (рис. 10-1). [c.142]

    Подобным же образом таутомеризация имидазольной группы, присутствующей в большинстве белков, связана с резонансом имидазолий-катиона. Представим себе, что протон при взаимодействии со структурой А [уравнение (2-6)] присоединится к атому азота, находящемуся в 1-м положении тогда вследствие резонанса положительный заряд немедленно распределится между обоими атомами азота. Это придаст кислотные свойства протону при атоме азота, находящемся в 3-м положении, протон диссоциирует и образуется таутомер В. Таутомеризации [c.79]

    Молекула О2, связанная одним концом с атомом железа, стабилизируется за счет связывания ее другого конца второй имидазольной группой белка (рис. [c.745]

    Атомы цинка расположены на оси симметрии 3-го порядка и связаны с тремя имидазольными кольцами гистидинов В-10. Роль атомов цинка не совсем ясна. Гексамеры легко образуют ромбические кристаллы даже внутри панкреатических клеток, синтезирующих инсулин. Структура инсулина воплощает в себе основные особенности строения олигомерных ферментов, обладающих циклической или диэдрической симметрией. Как и в случае гексамера инсулина, центральные части таких молекул часто открыты и торчащие боковые группы аминокислотных остатков (в случае инсулина имидазольные группы) образуют как бы гнезда , в которые могут входить ионы или молекулы, регулирующие активность белков. Однако функциональная роль цинка при действии инсулина остается пока неизвестной. [c.293]

    Гемоглобин осуществляет перенос кислорода от легких к различным органам, в которых протекают реакции окисления. Молекула гемоглобина состоит из двух пар полипептидных цепей (их аминокислотная последовательность известна) и четырех гемов, соединенных слабыми связями с гло-биновой частью (см. гл. IV). Пятое и шестое лигандные места атома железа гема заняты двумя имидазольными группами гистидиновых остатков глобина. Гемоглобин обладает замечательной способностью вступать в обратимую реакцию с молекулярным кислородом, образуя оксигемоглобин, в котором кислород заменяет одну из имидазольных групп и становится шестым лигандом атома железа, причем само железо не окисляется. Метгемоглобин, в котором /келезо окислено до трехвалентного состояния, ие способен соединяться с кислородом. Помимо кислорода гемоглобин соединяется и с другими небольшими молекулами или ионами. Следует, в частности, отметить его способность образовать очень прочный комплекс с окисью углерода, чем и объясняется известная токсичность этого соединения. Гем служит коферментом и некоторых других белков, по своей биохимической [c.233]

    Миоглобин и гемоглобин представляют собой высокоспиновые комплексы ферро-иона с имидазольной группой гистидина в пятом положении и молекулой воды в шестом. При замещении молекулы воды у атома железа кислородом или окисью углерода ферро-ион становится низкоспиновым, а парамагнитная молекула кислорода, имеющая два неспаренных спина, перестает быть парамагнитной (спины спариваются). Полный магнитный мо.мент молекулы оксигемоглобина становится равным нулю. Комплекс ферро-иона со спаренными спинами дает темно-красную окраску благодаря поглощению, связанному в основном с порфириновым кольцом. Окисление этих двух белков кислородом протекает сравнительно медленно, несмотря на то, что термодинамически это выгодно. Частично это связано с тем, что каждый такой процесс происходит с изменением спинового числа. При использовании других окисляющих агентов получаются высокоспиновые комплексы ферри-иона с белками, называемые метмиоглобином или метгемоглобином. Замещение молекул воды в шестом координационном положении атома железа в метгемоглобине на азид Мз или цианид СН дает низкоспиновый комплекс ферри-иона. [c.421]

    Биологические функции имидазола самым тесным образом связаны с основностью его молекулы. Именно по этой причине остаток гистидина в белке содержит в физиологической области pH около 7,4 одновременно заметные количества свободного основания и протонированного имидазолия. Это означает, что он может функционировать как акцептор и как донор протонов в зависимости от потребностей своего ближайшего окружения. Такую же роль играют остатки гистидина и в различных ферментах, например в рибонуклеазе, альдолазе, некоторых протеазах. Другим важным результатом проявления основных свойств имидазола является буферное действие гистидина в системе гемогло-бин-оксигемоглобин [7]. Отмечалось [7], что имидазольная группа в гистидиновой единице полипептидов — самое сильное основание, какое присутствует в каких-либо количествах при физиологических значениях pH, а катион имидазолия является самой сильной из кислот, обнаруженных в заметной концентрации (колебания р/(а зависят от местного окружения). [c.439]


    В заключение необходимо отметить, что при интерпретации кривых титрования белков возникает ряд трудностей, зависящих от целого ряда обстоятельств. Так, белки содержат очень большое число ионогенных групп, связывающих и отдающих протоны. Кривые титрования показывают, что на 1 г белка требуется около 1 ммоля кислоты и 1 ммоля основания. При молекулярном весе белка порядка 100 000 на одну белковую молекулу приходится, следовательно, около 100 кислых и 100 основных, групп. Однако точно установить число тех или иных основных групп затруднительно, поскольку на кривой титрования имеется некоторое перекрывание в области pH между 8 и 12. Следовательно, pH 8,5 принимается в качестве конечной точки нейтрализации а-аминогрупп и имидазольных групп до некоторой степени произвольно. На характере кривой титрования сказывается и взаимодействие белков с другими ионами, кроме водородных. В частности, белки образуют прочные связи с такими двухвалентными ионами, как ионы кальция, магния, фосфата и карбоната, а также одновалентными ионами хлора. Как уже говорилось, такое взаимодействие приводит к сдвигу изоионной точки и изменению электрохимических свойств белка-за счет нейтрализации ионогенных групп, что приводит к искажению-кривой титрования. Сдвиг изоионной точки особенно велик тогда, когда в растворе находятся ионы фосфатов, которые наиболее прочно связываются основными группами. [c.163]

    Это наблюдается в подвергнутых электродиализу бессолевых растворах белка [20, 53]. Соединение двуокиси углерода с гемоглобином имеет большое значение в физико-химическом равновесии крови, поскольку в присутствии углекислоты сродство гемоглобина к кислороду снижается — явление, хорошо известное в физиологии. Влияние углекислоты на сродство гемоглобина к кислороду обусловлено тем, что двуокись углерода соединяется с основными аминогруппами или имидазольными группами, расположенными в непосредственной близости к атому железа, к которому присоединяется кислород [52, 54]. [c.88]

    Электрометрическое титрование белков не может быть использовано для определения числа концевых аминогрупп, так как при таком титровании нет заметного перелома кривой в той точке, где кончается титрование аминогрупп и начинается нейтрализация имидазольных групп гистидина [7]. Тщательно проведенное электрометрическое титрование яичного альбумина и лактоглобулина показало избыток лишь в 1—2 свободных аминогрупп, если принять во внимание Е-аминогруппы лизина [8]. [c.123]

    Эти агенты способны алкилировать и имидазольную группу гистидина, е-амино-группу лизина при определенных значениях pH и температуре. Реакция алкилирования чаще всего применяется при изучении 5Н-групп с целью их блокирования для выяснения их роли в белках, особенно ферментативных. [c.93]

    Имидазольные атомы азота Боковые цепи, содержащие остатки гистидина, являются важными группами, связывающими металл как в природных металло-протеинах, например карбоксипептидазах (гл. 15), миоглобине и гемоглобине (гл. 25), так и в комплексах металла с белком, полученных в лаборатории (гл. 7). При таких взаимодействиях металлов с белками функциональные группы, присоединенные к металлу, в больщинстве случаев принадлежат аминокислотным остаткам, которые не находятся по соседству друг с другом в белковой цепи. Следовательно, остатки гистидина являются типичными группами, не образующими хелатов. [c.177]

    Иод-, бром- и хлорацетаты натрия легко взаимодействуют с сульфгидрильными, аминными, имидазольными группами полимерного субстрата с образованием соответствующих карбок-симетильных производных. Так, S-карбоксиметилирование белков в растворе иодуксусной кислоты происходит очень быстро и специфично. Реакции алкилирования иодистым метилом или дибромэтиленом протекают медленнее, нежели с иодуксусной кислотой, и реализуются преимущественно на -SH- и NH2-группах белка. В некоторых случаях возможен также деструктивный распад полимерной цепи. [c.369]

    Один из возможных результатов переноса фосфатной группы на функциональную группу белка состоит в индуцировании конформаци- онного изменения в молекуле белка. Действительно, имеются данные, весьма убедительно свидетельствующие о наличии таких изменений при действии АТР-зависимых ионных насосов (гл. 5, разд. Б,2,в) и при мышечной работе (дополнение 10-Е). Конформационные изменения могут также возникать в результате фосфорилирования регуляторных центров белков. Вполне возможно, что фосфорилирование имидазольной группы, соединенной водородной связью с группой С = 0 амидной группы полипептидной цепи белковой молекулы, ведет к таутомериым превращениям, аналогичным тому, которое было приведено в уравнении (6-84). Оно может способствовать конформационному изменению или может переводить белок в состояние, богатое энергией , способное самопроизвольно изменять свою форму, как это имеет место при мышечных сокращениях. [c.139]

    Было сделано необычайно интересное открытие, заключающееся в том, что координация гемового железа с гистидином, по всей видимости, лежит в основе кооперативности при связывании гемоглобина с кислородом [9, 10]. Радиус высокоспинового железа как в ферри-, так и в ферросостоянии столъ велик, что железо не помещается в центре порфиринового кольца и Смещается в сторону координационно связан- ной с ним имидазольной группы на расстояние, составляющее для Ре(II) 0,06 нм. Таким образом, в дезоксигемоглобине и железо, и имидазольная группа находятся от плоскости кольца дальше, чем в оксиге-моглобине. В последнем железо находится в центре порфиринового кольца, так как переход в низкоспиновое состояние сопровождается уменьшением ионного радиуса [9, И]. Изменение конформации белка, индуцированное небольшим смещением иона железа, уже было описано (гл. 4, разд. Д, 5). Однако истинная природа пускового механизма , приводящего к этим изменениям, пока в точности не ясна. С некоторым атриближением эти изменения можно рассматривать как чисто механи- [c.368]

    Применение. В гистохимии для флуоресцентной, метки белков. Образует очень прочные связи с а-аминогруппами аминокислот, е-аминогруппой лизина, относительно прочную связь с фенольной группой тирозина, кислртолабильну вязь е цистеином и нестойкое меченное по кольцу соединёние с имидазольной группой гистидина [Пирс, 130—131]. [c.132]

    Диксон и Нейрат [152] попытались непосредственно наблюдать образование N-ацилимидазольных производных при ацилировании химотрнпсина -нитрофенилацетатом. В отличие от первоначальных результатов [138] эти исследователи показали, что на стадии ацилирования можно наблюдать быстрое увеличение поглощения при 245 ммк, которое затем медленно убывает со временем. Зная, что N-ацетилимидазол имеет .ма. с при 245 ммк и е 3-10 , можно рассчитать, что увеличение поглощен11я обусловлено ацилированием примерно 0,4 моля имидазольных групп в 1 моле химотрипсина. Кроме того, найдено, что константа скорости первого порядка, вычисленная по убыванию поглощения при 245 ммк, близка к константе скорости деацилирования 6-хи-мотрипсина, измеренной по появлению ферментативной активности. Показано, что скорость восстановления ферментативной активности, в свою очередь, соответствует скорости деацилирования N-ацетилимидазола. Однако в настоящее время считают, что поглощение при 245 ммк не связано со стадией ацилирования, а характеризует физическое состояние белка [15, 161]. [c.281]

    Из химически активных групп белков 5Н-группы в известном отношении обладают самой широкой реактивностью. За некоторым исключением, реактивы, применяемые для идентификации или определения аминогрупп, алифатических и ароматических гидроксильных групп, имидазольного и гуанидинового остатков реагируют, часто более энергично, и с имеющимися 8Н-группами. В качестве примера можно назвать динитрофторбензол, йодаце-тат, азотистую кислоту, фенилизоцианат, иприт и его аналоги. Эта высокая реактивность 8Н-групп не всегда удобна для их определения. С одной стороны, очевидно, что для приблизительной оценки 5Н-групп может быть применено множество реагентов с другой стороны, известно, что в нашем распоряжении имеется очень мало реагентов, обладающих той специфичностью, которая необходима для количественного определения этих групп. Такими реагентами могут быть некоторые окислители, ряд соединений ртути и мышьяка и такие алкилирующие агенты, как йодацетат и йодацетамид. [c.64]

    Из вышесказанного следует, что если апилтиолы адсорбируются на белке, так что стерическое взаиморасположение эфирной связи и имидазольной группы гистидина аналогичны взаимному положению этих групп в н-пропил-у-(4 -имидазолил)тио- [c.313]

    Свойства некоторых медьсодержащих ферментов представлены в табл. 44. Многие из этих белков содержат четное число атомов Сх.1 на молекулу и обладают характерной голубой окраской (Л, .>580 ммк), обусловленной наличием тетрагональных комплексов иоиов Сн с азотсодергкащими лигандами (боковые амино-, имино- и имидазольные группы аминокислот). [c.373]

    Грубых приближений. Степень соответствия теории эксперименту приблизительно такая же как и в случае имидазольных групп и аминогрупп. (Значения р/Схар. для этих групп приведены в табл. 38.) При исследовании других белков, молекулы которых невелики, получаются те же результаты грубое соответствие с теорией, но всегда небольшие определенные количественные отклонения от ожидаемого значения наклона прямой или от значения р/Схар. или от обеих этих величин. [c.632]

    Имеются ли наблюдения, указывающие на существование водородных связей типа -Н в реальных биологических системах Такие водородные связи были обнаружены методом ядерного магнитного резонанса между остатками гистидина в активном центре фермента — панкреатической рибонуклеазе [249]. В дальнейшем ЯМР-методом было показано, что в полу-протонированном гистидине в водном растворе при этих условиях проявляется характерный стэкинг -эффект [250] (стопкообразная упаковка. — Прим. ред.). Последний может быть обусловлен взаимодействием между связями -М. Олдридж и Розе [251] на основании большого числа экспериментальных работ рассматривали водородные связи между имидазольными группами гистидиноБЫх- остатков белков в мембранах митохондрий. [c.304]

    Титрование от pH 8,5 до pH 6,5 обусловлено взаимодействием протонов с имидазольными группами гистидина и с концевыми а-аминогруппами, которые присутствуют в белке в небольшом количестве. Общее число этих групп будет соответственно равно числу эквивалентов кислоты, необходимых для титрования в этой области pH. И, наконец, общее число е-аминогрупп лизина, гидроксильных групп тирозина и сульфгидрильных групп цистеина равно числу эквивалентов основания, необходимых для титрования от pH 8,5 до pH II—12. Аргинин при титровании непосредственно не определяется, так как константа диссоциации гуанидиновой группы настолько высока (р/Сз несколько выше 13), что эта группа при любом значении pH, допускающем точные измерения, не может в заметном количестве перейти в ионизированную форму. Поэтому максимальное связывание основания белком нельзя определить достаточно точно. [c.162]

    По кривой диссоциации белка можно определить роль свободных кислых и основных групп отдельных аминокислотных остатков. Активными кислотными и основными группами белка являются карбоксильные группы аспарагиновой и глютаминовой кислот, имидазольная группа гистидина, аминогруппа лизина, фенольн ая группа [c.160]

    Белки обладают, по существу, теми же ионными группами, что и аминокислоты. Однако в белке большинство сс-аминогрупп и с -карбоксильных групп связаны друг с другом пептидными связями. Кислые группы белков представлены главным образом свободными карбоксильными группами аспарагиновой и глутаминовой кислот, ионизация которых соответствует рК 3,87 и 4,28 (табл. 7). К основным группам белков относятся гуанидиновые группы аргинина (рК 12,48) и е-аминогруппы лизина (рК 10,53). Гидроксильные группы тирозина и сульфгидрильные группы цистеина отдают свои протоны в одной и той же области pH (рК около 10), в то время как имидазольные группы гистидина титруются вблизи pH 6 (табл. 7). [c.81]

    Кривые электрометрического титрования белков, в связи с буферным действием карбоксильных и аминных групп, дают отчетливые перегибы при pH 3—4 и 10—12. Нет, однако, возможности при помощи электрометрического титрования отдифференцировать небольшое количество концевых с -карбоксильных групп белков от и -карбоксильных групп аспарагиновой и глутаминовой кислот так же, как и конечные й-аминогруппы от -аминогрупп лизина. На основе титрования можно сделать лишь одно заключение, что число конечных сг-карбоксильных групп не может быть очень велико (см. гл. VII), так как иначе перегиб кривой оказался бы сдвинут от pH 3—4 ближе к pH 2. Перегиб около pH 6—7, который заметен на многих кривых титрования, соответствует буферному действию имидазольных групп гистидина (см. фиг. И). [c.81]

    Диксон разработал метод, который позволяет на основе данных по ферментативной кинетике идентифицировать функциональные группы, входящие в активный центр фермента. Если связывание субстрата или сам катализ сопровождаются диссоциацией функциональных групп белка или субстрата, то, используя кривые, характеризующие зависимость величин lg Утах, — gKм и lgvo от pH, можно приблизительно определить природу этих функциональных групп К В благоприятных случаях на графиках будут наблюдаться резкие перепады при значениях pH, соответствующих значениям рКа функциональных групп, непосредственно участвующих в ферментативном акте. Как известно, многие ферменты содержат каталитически важные сульфгидрильные и имидазольные группы, и приходится лишь сожалеть, что теплоты ионизации этих двух групп почти одинаковы. Если бы это было не так, то, используя метод Диксона, а также уравнение (4.51), можно было бы не только обнаруживать, но и различать эти два вездесущих нуклеофила. [c.248]


Смотреть страницы где упоминается термин Белки имидазольные группы: [c.145]    [c.17]    [c.214]    [c.80]    [c.305]    [c.115]    [c.365]    [c.413]    [c.198]    [c.265]    [c.439]    [c.104]    [c.298]    [c.649]    [c.736]    [c.36]    [c.128]    [c.76]    [c.36]    [c.299]    [c.126]   
Биохимия Том 3 (1980) -- [ c.268 ]




ПОИСК





Смотрите так же термины и статьи:

Белки k-m-e-f-группы



© 2025 chem21.info Реклама на сайте