Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы определения серебра радиоактивационные

    Известны методы определения серебра в почвах, растениях, природных и сточных водах, в рудах, минералах, силикатах и горных породах, в чистых металлах и неметаллах, в сплавах, полупроводниковых материалах, в гальванических ваннах, в реактивах и фармацевтических препаратах, в фотографических материалах, в смазочных маслах и других объектах. За небольшими исключениями, особенность этих материалов состоит в том, что содержание серебра в них обычно невелико, поэтому главное значение имеют методы определения микроколичеств серебра. Из физических методов наибольшее распространение имеет спектральный анализ. В последние годы публикуется много работ в области радиоактивационного определения серебра и атомноабсорбционных методов. В химических методах чаш,е всего применяется экстракционно-фотометрическое определение серебра в виде дитизоната, реже используется и-диметиламинобензилиденроданин и некоторые другие органические реагенты. [c.172]


    Описаны рентгенофлуоресцентные методы определения серебра в свинцовом блеске и других рудах [379, 1483]. Характеристика спектральных, радиоактивационных и атомно-абсорбционных методов определения серебра в рудах и минералах приведена в приложениях I — III к настоящей главе. [c.179]

    Спектральные, атомно-абсорбционные и радиоактивационные методы определения серебра в сплавах см. в приложениях I — III к настоящей главе. [c.190]

    Описаны рентгеноспектральные методы определения серебра в гальванических ваннах и в гальванических покрытиях [490, 589, 983]. Спектральные, атомно-абсорбционные и радиоактивационные методы определения серебра в этих материалах приведены в приложениях I — III к настояш ей главе. [c.191]

    П р и ложение I Радиоактивационные методы определения серебра в различных материалах [c.195]

    Для определения серебра в этих материалах описано много физических методов. Краткая характеристика спектральных, атомно-абсорбционных и радиоактивационных методов определения приведена в приложениях I — 1,11 к настоящей главе. Описано [c.179]

    Советский Союз обладает богатыми природными ресурсами благородных металлов, в частности металлов платиновой группы. Производство этих металлов расширяется. Важнейшей задачей является повышение степени извлечения этих элементов в процессе переработки руд, что невозможно без хорошо налаженного химико-аналитического контроля производства. В настоящее время для этой цели используют некоторые современные физические методы анализа — атомно-абсорбционные, радиоактивационные, рентгенофлуоресцентные. Однако наиболее сложные полные анализы материалов осуществляют в основном химическими методами, пробирно-спектральным способом, прямым эмиссионно-спектральным методом (в некоторых особых вариантах его). Для концентрирования платиновых металлов применяют осаждение тиокарбамидом. Основные трудности заключаются в отсутствии надежных методов анализа бедных платиновыми металлами производственных продуктов, а также руд, например хороших и разнообразных методов определения очень малых количеств иридия. Применяющиеся методы полного анализа, как правило, длительны и трудоемки. Невелика точность ряда определений, особенно малых количеств платиновых металлов. Отсюда вытекают и задачи исследователей. Успехи и проблемы аналитической химии элементов платиновой группы, серебра и золота периодически обсуждаются на совещаниях по химии, технологии и анализу благородных металлов. Так, X совещание состоялось в Новосибирске в июле 1976 г. [c.137]


    Радиоактивационный метод анализа. Метод основан на облучении испытуемого материала элементарными частицами, причем вследствие ядер-ных реакций возникают радиоактивные изотопы исследуемых элементов или новые радиоактивные элементы. После облучения определяют содержание радиоактивных компонентов ядерной реакции. Для этого в простейших случаях используют непосредственно измерение радиоактивности материала после облучения, учитывая природу излучения, его энергию и период полураспада изотопа. Так, например, находят содержание примеси меди в металлическом серебре. При облучении образца серебра посредством а-частиц медь (Си ) превращается в радиоактивный изотоп галлия (Оа ), который излучает позитроны и характеризуется периодом полураспада 9,6 ч. По интенсивности излучения этого изотопа галлия рассчитывают содержание меди в образце серебра. При облучении, вследствие ядерной реакции, из основного материала — серебра образуется два радиоактивных изотопа индия, однако их период полураспада велик, поэтому радиоактивность мала таким образом, эти изотопы не мешают определению меди. [c.21]

    Сведения о спектральных и радиоактивационных методах определения серебра в водах приведены в приложениях к настояо1,ей главе. [c.176]

    Для определения мышьяка в водах используются все основные методы его определения, в том числе фотометрические в виде мышьяковомолибденовой сини [323, 452, 785, 801, 942, 993, 1106], с применением диэтилдитиокарбамината серебра в качестве реагента [673, 1144], с применением бромиднортутной индикаторной бумаги [24], полярографические [52, 93, 97, 120, 1029], радиоактивационные [1, 357, 1072], атомно-абсорбционной спектрофотометрии [798, 1206]. [c.182]

    Из ряда работ по радиоактивациопному анализу следует упомянуть об исследованиях, посвященных определению в различных объектах тех примесей, которые мы определяли в германии. Медь определялась радиоактивационным методом в различных объектах биологических материалах, люминофорах, магнии, алюминии, серебре. В металлическом магнии высокой чистоты было найдено 6-10 г Си [5]. [c.59]


Аналитическая химия серебра (1975) -- [ c.132 , c.195 , c.198 ]




ПОИСК







© 2025 chem21.info Реклама на сайте