Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аналитическая химия в контроле производства

    Чувствительность, точность и время, затрачиваемое на анализ, являются наиболее важными критериями при выборе метода контроля производств, исследования месторождений полезных ископаемых, при различных научно-исследовательских работах и в других случаях. Условия применения методов аналитической химии чрезвычайно разнообразны, поэтому не может быть одного общего правила для выбора метода анализа. Вряд ли может быть также один метод определения какого-либо компонента, наилучший для всех случаев по чувствительности, точности и времени, необходимому для анализа. В зависимости от условий тот или другой критерий приобретает решающее значение. Большое значение имеет также специфичность (избирательность) метода. [c.28]


    Разработанные аналитической химией методы анализа находят применение для решения самых различных вопросов химии и других отраслей науки, а также производства. С помощью этих методов получают необходимую информацию геологи, металлурги, биологи, агрономы и т. д. Однако в этом случае методы анализа не предмет исследования, а средство, с помощью которого осуществляют исследования или получают сведения о полезных ископаемых, для контроля производства и т. п. Поэтому в таких случаях говорят, что информацию об элементарных объектах получают с помощью химического анализа. [c.8]

    Аналитическая химия тесно связана с различными областями науки и производства. Химический анализ применяют для контроля качества сырья, полуфабрикатов и готовой продукции. Каждая область науки и производства ставит перед аналитической химией свои специфические задачи. Так, в медицине большое значение имеет качественное обнаружение и количественное определение отдельных элементов, которые входят в состав тканей живых организмов и обусловливают их нормальную физиологическую деятельность. Урожайность сельскохозяйственных культур зависит в значительной степени от содержания в поч вах и в удобрениях многих микроэлементов. В связи с этим возникла необходимость разработать методы определения в удобрениях микроколичеств ряда элементов (марганца, бора, железа, молибдена). [c.15]

    В эпоху кустарных и полукустарных производств использовались отдельные случайные химические наблюдения, которые закреплялись в определенных рецептах, часто засекречиваемых. В настоящее время предъявляются требования рационального выбора исходных веществ и рационального метода их переработки для получения нужных продуктов необходимого качества. Эта рациональность в решении технологических или чисто научных химических проблем обеспечивается в первую очередь использованием основных физикохимических закономерностей. Постепенно химическая технология становится прикладной физической химией. Во всех областях химии — в неорганической, органической и аналитической химии — невозможно обходиться без использования идей и методов физической химии. Но современная физическая химия дает не только систему знаний общих закономерностей химических явлений, но исследователь и активный технолог находит в ней большое количество методов исследования, методов количественной оценки и контроля химических процессов. [c.3]


    Содержание пособия дает возможность студентам получить представление о значении аналитической химии в учебной и производственной сфере, ее связи с методами аналитического контроля химических производств развить химиче- [c.3]

    Существенное значение для многих технологических процессов имеет контроль производства, осуществляемый методами аналитической химии. Так, например, правильно составить шихту в металлургическом, стекольном или ином производстве можно только зная состав исходных материалов. [c.7]

    Методическое пособие по производственному обучению лаборантов химической и нефтеперерабатывающей промышленности освещает вопросы организации производственного обучения лаборантов и взаимосвязь производственного обучения с теоретическим, вопросы организации работы лаборатории, техники безопасности и противопожарной техники в лаборатории. В пособии приведены основные сведения по изучению неорганической и органической химии, аналитической химии, количественного анализа, физико-химических методов анализа, технического анализа, а также контроля производства. [c.2]

    Большое значение имеет анализ материалов в ходе технологического процесса, например контроль за плавкой в металлургической промышленности или полнотой извлечения в гидрометаллургических производствах, позволяющий на ходу устранять возникающие неполадки. Не менее важную роль играет аналитическая химия в геологии, геохимии, сельском хозяйстве, фармацевтической, лакокрасочной, нефтехимической промышленности и многих других отраслях народного хозяйства. [c.7]

    В книге рассказывается о целях и стимулах развития аналитической химии, ее месте в системе наук. Охарактеризованы методы этой науки и объекты анализа, приборы и реактивы. Много внимания уделено химическому контролю производства, преподаванию аналитической химии, организации и координации исследований, международным связям аналитиков. Читатель найдет здесь сведения о научной литературе по аналитической химии, о географии научных центров. Все эти аспекты иллюстрируются примерами из советской аналитической химии. [c.2]

    Баранова В.Г Аналитический контроль производства основных мономеров для синтетических каучуков. Л. Химия. 1967, 212 с. [c.36]

    Для контроля производства используют аналитическую химию, молекулярную и атомную спектроскопию, электрохимию, хроматографию и др. Каждый из этих методов имеет свои преимущества и недостатки, определяющие область его рационального применения. В ближайшее время не предвидится появления универсального метода, способного решить все аналитические задачи. В то же время многие задачи могут быть решены несколькими разными методами. Недавно появился [44] первый в отечественной литературе обзор исторических и практических аспектов проблемы качества лабораторного анализа, в котором приводятся нормативные документы, регламентирующие проведение контроля качества анализа. [c.26]

    В нашей стране аналитическая химия получила боль-шое развитие. Каждая отрасль промышленности я-меет свои научно-исследовательские институты, в которых разрабатывают новую технологию производства, а также новые аналитические методы контроля этой технологии и всех промежуточных и конечных материалов производства. В состав Академии наук СССР входит Институт геохимии и аналитической химии, играющий ведущую роль в разработке новых методов анализа геологических и других объектов широкого диапазона. [c.7]

    Определение содержания воды в органических соединениях — одна из традиционных задач аналитической химии. Точное знание количества влаги в растворителе совершенно необходимо при изучении процессов гидратации, процессов экстракционного извлечения и при исследовании многих других вопросов химии, физики и смежных с ними наук. Быстрые и надежные методы определения влаги необходимы при контроле технологических процессов в условиях промышленного производства. И несмотря на то, что этому вопросу посвящены многочисленные работы и в Советском Союзе, и за рубежом, новые задачи, стоящие перед химической наукой, требуют новых теоретических и экспериментальных исследований, требуют разработки более экспрессных, более универсальных и надежных способов анализа. Существующие химические методы определения воды позволяют установить общее (валовое) содержание воды в органических соединениях, но не позволяют исследовать состав ассоциатов между молекулами воды и растворителя, не позволяют выяснить содержание воды в различных комплексах, образующихся в растворе. [c.185]


    Следующим важным моментом, характеризующим современный социальный заказ общества аналитической химии, связан с созданием полностью или частично автоматизированных химических предприятий и тенденцией к увеличению доли таких предприятий в общем объеме производства. Технологический процесс усложняется, и для повышения его эффективности необходим детальный контроль состава технологических потоков. Все чаще контролировать производство из лаборатории становится невозможным, возникает необходимость переноса средств контроля непосредственно в цех, туда, откуда, собственно, и управляют технологическим процессом. Соответственно должен быть изменен по сравнению с обычным и сам процесс анализа. [c.14]

    Область исследований и техники, целью которой является создание ДС ИИС контроля качества объектов исследования и АСУ ТП, быстро превращается фактически в новую область аналитической химии. Однако требования в традиционных областях применения аналитической химии, например горнодобывающей промышленности, металлургии, также возросли как с точки зрения увеличения объема аналитического производства. так и его качества. [c.15]

    Динамика и огромные масштабы современного промышленного производства заставляют создавать быстрые экспресс-методы анализа дл эффективного контроля и своевременной коррекции производственного процесса в таких важных хозяйственных областях, как металлургия или химическая промышленность. В связи с этим для развития аналитической химии первостепенное значение приобретает автоматизация аналитических методов, поскольку она обеспечивает быстроту и низкую себестоимость анализов. Последняя очень важна в случае массовых анализов, при геологических исследованиях или аналитическом контроле крупнотоннажного непрерывного производства. Для характеристики крупного место- [c.8]

    Какие стороны этой науки должны составить ее общую характеристику Видимо, речь должна идти о целях аналитической химии и стимулах ее развития, о ее месте в системе наук, об истории и перспективах о методах и объектах анализа, о приборах, реактивах и стандартах. Не должны быть забыты контроль производства, преподавание аналитической химии, подготовка кадров аналитиков-профессионалов, география научных центров. Следует, вероятно, рассмотреть организацию аналитических исследований и систему их координации, рассказать о конференциях и семинарах, о международном сотрудничестве химиков-аналитиков. Картина должна быть дополнена сведениями о научной литературе. [c.5]

    Советский Союз обладает богатыми природными ресурсами благородных металлов, в частности металлов платиновой группы. Производство этих металлов расширяется. Важнейшей задачей является повышение степени извлечения этих элементов в процессе переработки руд, что невозможно без хорошо налаженного химико-аналитического контроля производства. В настоящее время для этой цели используют некоторые современные физические методы анализа — атомно-абсорбционные, радиоактивационные, рентгенофлуоресцентные. Однако наиболее сложные полные анализы материалов осуществляют в основном химическими методами, пробирно-спектральным способом, прямым эмиссионно-спектральным методом (в некоторых особых вариантах его). Для концентрирования платиновых металлов применяют осаждение тиокарбамидом. Основные трудности заключаются в отсутствии надежных методов анализа бедных платиновыми металлами производственных продуктов, а также руд, например хороших и разнообразных методов онределения очень малых количеств иридия. Применяющиеся методы полного анализа, как правило, длительны и трудоемки. Невелика точность ряда определений, особенно малых количеств платиновых металлов. Отсюда вытекают и задачи исследователей. Успехи и проблемы аналитической химии элементов платиновой группы, серебра и золота периодически обсуждаются на совещаниях по химии, технологии и анализу благородных металлов. Так, X совещание состоялось в Новосибирске в июле 1976 г. [c.137]

    Многообразие производств обусловливает и многообразие требований к аналитическому контролю, вызывает необходимость применять весь арсенал методов аналитической химии. Общие требования к контролю остаются теми же, что и в металлургии так же различаются задачи маркировочных, арбитражных анализов и анализов экспрессных. Сырье и готовую продукцию анализируют методами, которые обеспечивают высокую точность ведь па основе сведений о составе сырья устанавливают параметры технологического процесса, а состав конечного продукта часто определяет его сорт и, следовательно, цену. Для экспрессных же,, оперативных анализов прежде всего важна скорость выполнения. [c.154]

    НЫХ методов анализа (например, применение фотоэлектрических фотометров, рН-метров). В ходе управления процессами обогащения угля и переработки нефти использовали в основном данные анализа, характеризующие анализируемую пробу в целом, например температуру затвердевания или температуру вспышки, предел воспламеняемости или данные об отношении анализируемой пробы к действию раствора перманганата калия. Определение ряда таких характеристик, например определение плотности и давления паров, определение вязкости или снятие кривых разгонки, можно осуществлять при помощи приборов. Указанные методы анализа важны для контроля качества веществ, но они не соответствуют современному уровню исследований и контроля производства, а также не способствуют прогрессу в этих областях. Развитие аналитической химии происходит в направлении внедрения физико-химических методов анализа или методов, использующих специфичные свойства веществ, при этом на первый план выдвигаются методы газовой хроматографии. В связи с этим на примере развития газовой хроматографии можно проследить тенденции развития аналитической химии в целом. Метод газовой хроматографии известен с 1952 г., в 1954 г. появились первые производственные образцы газовых хроматографов, а уже в 1967 г. четвертая часть всех анализов, проводимых на нефтеперерабатывающих заводах США, осуществлялась методом газовой хроматографии (А.1.13]. К 1968 г, было выпущено свыше 100 ООО газовых хроматографов [А.1.14], и лишь небольшую часть из них применяли для промышленного контроля. Газовые хроматографы были снабжены детекторами разных типов в зависимости от специфических свойств анализируемого вещества, его количества и молекулярного веса, позволяющими провести определение вещества при его содержании от 10 до 100% (в случае определения летучих неразлагающихся веществ в газах — при содержании 10- %). К подбору наполнителя для колонок при разделении различных веществ подходили эмпирически. В 1969 г. появились газовые хроматографы, которые наряду с различными механическими приспособлениями содержали элементы автоматики. Для расчета результатов анализа по данным хроматографии и в лаборатории и в ходе контроля и управления процессом применяли цифровые вычислительные машины в разомкнутом контуре. В настоящее время эти машины вытесняются цифровыми вычислительными машинами в замкнутом контуре. При этом большие вычислительные машины со сложным оборудованием можно заменить небольшими. В будущем результаты анализа можно будет получать гораздо быстрее. Методы газовой хроматографии в дальнейшем вытеснят и другие методы анализа мокрым путем и внесут значительный вклад в автоматизацию процессов аналитического контроля. Внедрение техники и автоматизации в методы аналитической химии будет способствовать увеличению числа специалистов с высшим и средним специальным образованием, работающих в области аналитической химии. В настоящее время деятельность химиков-аналитиков выглядит совершенно иначе. Химик-аналитик должен обладать специальными знаниями в области химии, физики, математики и техники, а также желательно и в области биологии и медицины. Все это необходимо учесть при подготовке и повышении квалификации химиков-аналитиков, лаборантов и обслуживающего пс[)сонала. [c.438]

    Успешное развитие аналитической химии и организация эффективного контроля химического состава па производстве невозможны, если лаборатории не обеспечены необходимыми приборами, реактивами и стандартными образцами. На состояние аналитической химии, как и любой другой области знания, большое влияние оказывает издание литературы и подготовка квалифицированных кадров. Определенное значение имеет и рациональное географическое размещение научных центров, координация исследований, связи с зарубежными учеными. Все это мы и хотели бы обсудить в данной главе. [c.160]

    Свердловская школа химиков-аналитиков сложилась в 30—40-е годы главным образом под руководством В. С. Сырокомского и Н. А. Тананаева. В настоящее время здесь успешно изучаются новые органические реагенты и разрабатываются новые методы определения металлов (Уральский политехнический институт), проводились работы по дифференциальной спектрофотометрии (Уральский университет). Большое значение имеют осуществляемые в Свердловске работы по созданию и выпуску стандартных образцов и метрологическому обоснованию аналитических методов. Интересны исследования по полярографии. Следует также отметить решение важнейших задач в области аналитической химии отдельных элементов и организации контроля металлургических и других производств (Институт химии Уральского научного центра АН СССР и др.). [c.203]

    Потенциометрия как электрохимический метод исследования и анализа заключается в измерении электродного потенциала и нахождении зависимости между его величиной и концентрацией (точнее, активностью) потенциалопределяюшего компонента в растворе. Используя эту зависимость, можно установить не только активность ионов, но и ряд характеристик изучаемых равновесных химических, биологических и других систем. С другой стороны, проследив во время химической реакции за изменением электродного потенциала, можно судить об изменении концентрации реагирующих веществ в растворе. Таким приемом, например, пользуются в производстве при непрерывном технологическом контроле химических процессов и при количественном определении веществ. В последнем случае имеется в виду широко используемый в аналитической химии метод потенциометрической индикации конечной точки титрования (к.т.т.). [c.19]

    Методы абсорбционной спектроскопии ввиду их большой чувствительности и избирательности широко применяются при решении многих задач аналитической химии. Эти методы используют при контроле производства и анализе готовой продукции ряда отраслей промышленности химической, металлургической, металлообрабагы-ваюш,ей, в почвенном, биохимическом анализе, а также для определения малых и ультрамалых количеств примесей в веществах особой чистоты (10 —10" %). Для определения больших количеств веществ с точностью, не уступающей гравиметрическим и тит-риметрическим методам, а также при анализе многокомпонентных систем применяют различные варианты дифференциальной спектро-фотометрии. При автоматизации контроля производства рационально использовать метод спектрофотометрического титрования. Методы абсорбционной спектроскопии остаются труднозаменимыми при анализе объектов, содержащих ядовитые летучие соединения, что делает ограниченным применение атомно-абсорбционного метода и методов эмиссионной спектроскопии. Особенно большое значение имеют методы абсорбционной спектроскопии для исследования процессов комплексообразования и получения количественных характеристик комплексных соединений. [c.3]

    Развитие классической аналитической химии шло в направлении разработки новых органических реагентов для селективного обнаружения и количественного определения элементов, совершенствования методик анализа и внедрения математических методов обработки результатов анализа. Начиная с середины прошлого века, сначала для целей идентификации, а затем и для количественных определений в аналитической химии стали использовать инструментальные методы анализа, обладающие преимуществами в чувствительности, скорости и точности выполнения анализа, необходимые в научных исследованиях и производственном контроле. Развитие инструментальных методов привело к появлению новых направлений (например, аналитическая биохимия, хроматография, радиоаналитическая химия и т. п.). В эпоху научно-технической революции появление принципиально новой методологии — моделирования, алгоритмизации, системного подхода — привело к перестройке и в аналитической химии, которую теперь квалифицируют как науку, занимающуюся получением информации о химическом составе вещественных систем. Полная химическая информация о качественном и количественном составе, получаемая в максимально короткие сроки на минимальном количестве исследуемого объекта, требуется практически во всех отраслях науки, техники и промышленности. Это стало возможным в результате развития в XX в. компьютерной техники и автоматизации производства. [c.6]

    Первая реакция, естественно, привела к выбору методов, удовлетворяющих новым требованиям, из классических, уже имеющихся методов анализа. Наряду с этим стали разрабатываться и принципиально новые. Расширение области применения автоанализаторов обусловило создание автономных, дистанционных, миниатюрных и селективных датчиков состава, для обозначения которых в современной научной литературе часто используют термин химический сенсор или просто сенйор. Появление таких терминов, как промышленная аналитическая химия, сенсор, сенсорный анализ, и нечеткость их определений говорят о формировании новой области аналитической химии, новой области знания, ранее не отраженной в понятиях, не зафиксированной отдельным словом. Развитие этой области обусловлено новыми задачами аналитической химии, задачами контроля окружающей среды, автоматизации химических и биотехнологических производств. [c.18]

    Чтобы наиболее полно раскрыть роль технического аяализа в управлении технологическими процессами, авторы рассматривают не анализ отдельно взятых соединений, а комплекс аналитических работ, осуществляемых в производстве того или иного продукта. В пособии описаны лишь наиболее характерные методики анализа, позволяющие выработать у учащихся необходимые навыки работы в разнообразных областях аналитической химии. Включено также несколько аналогичных работ (в частности, по хроматографическому анализу) с тем, чтобы в зависимости от имеющихся в лаборатории реактивов и оборудования преподаватель мог выбрать одну из них. Значительное внимание уделено современным физико-химическим методам анализа, роль которых в контроле технологических процессов на всех стадиях и в оценке качества готовой продукции непрерывно возрастает. [c.3]

    На основе методов аналитической химии (аналитики) осуществляется фармацевтический анализ — огфеделение качества лекарств и лекарственных средств, изготовляемых промышленностью и аптеками. Фармацевтический анализ включает анализ лекарственных препаратов, лекарственного сырья, контроль производства лекарств, токсикологиче- [c.10]

    В книге рассматриваются общие вопросы изотопии химических элементов, важнейшие свойства стабильных и радиоактивных изотопов и их соединений, основные типы радиоактивного распада, методы работы с радиоактивными и стабильными изотопами. Основное место в книге уделено вопросам применения стабильных и радиоактивных, изотопов в химических исследованиях и в химической промышленностн. Рассматриваются возможности н границы применения метода меченых атомов, применение изотопов в аналитической и физической химии. Излагаются основы радиационной химии и возможности радиационно-химических методов синтеза. Отдельная глава книги посвящена применению изотопов для разработки технологии промышленных операций и автоматизации методов контроля производства в химической промышленности. [c.3]

    Аналитическая химия как область науки имеет мощный фантастический по объему фундамент в виде практических работ по анализу и контролю ре= альных, всем нужных объектов. Анализ крови и мочи контроль производства лекар>ств контроль качества и безопасиости пищевых продуктов анализ воды, которую мы пьем и в которой купаемся оценка степени чистоты воздуха анализ почв быстрое обнаружение взрывчатых веществ, ядов и наркотиков анализ геологических объектов, например при разведке полезных ископаемых проверка марки бензина—да где только не делаются химические анализы Сам эт(уг, далеко не полный перечень химикоаналитических объектов говорит многое о чрезвычайной важности аналитических служб и науки, которая эти службы обеспечивает идеями, методами, приборами, реактивами, способами обр 1ботки результатов и т. д. [c.5]

    Приступая к анализу любого обаекта, химик должен четко понимать цель анализа. Обычно эту цель ставят другие люди — заказчики. В приведенных примерах заказчиками являются соответственно инжен на производстве, крестьянин, служба водного контроля, металлургическое предприятие, врач, директор музея. Очень часто сначала задача бьшает сформулирована не на аналитическом языке (включающем такие понятия, как общий состав материала, содержание определяемого компонента или его строение). Поэтому прежде всего аналитику надо собрать всю информацию, необмэдимую для того, чтобы переформулировать задачу в терминах аналитической химии. Таким образом, нужен диалог между заказчиком и аналитиком с целью согласования постановки задачи. [c.56]

    Остаточные мономеры и низкомолекулярные неполимеризующиеся примеси, попадающие в полимерные материалы из исходного сырья и употребляемых в их производстве растворителей, крайне неблагоприятно действуют на эксплуатационные качества самих полимеров. Источником примесей органических растворителей в полимерных пленках могут оказаться также лакокрасочные материалы, используемые для нанесения украшений и надписей. Иногда летучие примеси попадают в пластмассы вместе с добавляемыми к ним пластификаторами. Наконец, в некоторых медицинских полимерных упаковочных материалах и изделиях содержатся остаточные количества окиси этилена, применяемой для их стерилизации. Большинство содержащихся в полимерных материалах летучих примесей — вредные и ядовитые вещества, а винилхлорид является канцерогеном, вдыхание которого приводит к раку печени. Содержание этих компонентов подлежит строгому нормированию и контролю, причем особенно жесткие нормы устанавливаются на материалы, предназначаемые для упаковки и хранения пищевых продуктов. В этом случае даже сравнительно малотоксичные летучие примеси, попадая в пищу, могут существенно изменить ее запах и вкус, снизить качество и сделать непригодной к употреблению. Определение следов летучих примесей стало, таким образом, одним из важнейших направлений аналитической химии полимеров. Применение для этой цели парофазного анализа представляется особенно целесообразным прежде всего потому, что вводить в хроматограф полимеры нежелательно и не всегда возможно. Однако парофазный анализ полимеров требует учета специфических свойств анализируемых объектов, подавляющее большинство которых представляет собой твердые материалы, плохо растворимые в обычных растворителях и разлагающиеся при сравнительно низких температурах. Казалось бы, самым простым решением задачи мог быть анализ равновесной газовой фазы над полимером, но диффузия летучих компонентов из твердого полимера к его поверхности затруднена и равновс  [c.138]

    Масс-спектрометрня является одним из наиболее бурно развивающихся, эффективных экспрессных методов анализа и установления строения как индивидуальных органических соединений, синтетических, природных, так и их смесей. Благодаря своей исключительно высокой чувствительности и возможности использования в комбинации с газовой и жидкостной высокоэффективной хроматографией этот метод широко применяется в органической, биоорганической, биологической, физической, аналитической, медицинской химии, в нефтехимии, фармакологии, токсикологии, охране окружающей среды, судебно-медицинской экспертизе и в контроле производства. [c.8]

    Вообще амперометрическое титрование может оказать существенную помощь при решении основных задач современной аналитической химии. Хорошо известно, что развитие науки и техники требует дальнейшего совершенствования методов анализа и что важнейшими задачами являются сейчас следующие определение малых количеств (порядка тысячных и десятитысячных долей процента) всех элементов селективное определение этих элементов в комплексных рудах и в различных продуктах производства металлургических предприятий, в том числе в чистых и сверхчистых металлах автоматизация химико-аналитического контроля производства на предприятиях черной И цветной металлургии. При решении такцх проблем придется в некоторых случаях жертвовать быстротой выполнения анализа ради достижения более высокой точности и избирательности определения. Исходя из теоретических и практических особенностей и преимуществ амперометрического титрования, можно не сомневаться в том, что оно окажется во многих случаях одним из удобных методов для решения указанных задач. [c.25]

    С развитием металлургии, химической промышленности и других производств все более возрастала роль аналитической химии в решении различных вопросов контроля этих производств. При этом оказалось, что классические методы часто не могут удовлетворять новым требованиям. Химический анализ, как метод контроля производства, должен выполняться настолько быстро, чтобы на основе его данных можно было регулировать технологический процесс. Классические методы осаждения, фильтрования и другие выполняются в течение длительного времени и не позволяют надежно определять содержание микропримесей. В настоящее время нередко применяют материалы с содержанием в них 10"2— 10 % примесей. В связи с этим были установлены закономерности и разработаны методы измерения других свойств веществ, прежде всего оптических и электрохимических. Были [c.5]

    Полярографическому исследованию жирорастворимых витаминов посвящено небольшое число работ, проведенных впервые японскими [И —14], а позднее советскими исследователями [15—17]. Эти работы указывают на большие возможности применения полярографического анализа в контроле синтеза витаминов. Поэтому мы считаем, что одной из задач исследований в аналитической химии витаминов является создание методик постадийного контроля производства и анализа готовых витаминных препаратов с использованием полярографии, что позволит заменить существующие, зачастую малоспецифичные химические методы. [c.177]

    Основные научные работы относятся к аналитической и физической химии. Разработал колориметрический метод определения водородного показателя с использованием кислотно-основных индикаторов, Указал на важность контроля этого показателя в промышленности, бактериологии и аналитической химии. Изучал процессы образования и кристаллизации осадков с помощью радиоактивных изотопов. Одним из первых в США выполнил фундаментальные исспе-дования в области полярографического анализа. Изучал кинетику и механизм эмульсионной полимеризации, разработал низкотемпературный способ производства синтетического каучука. После 1955 сконцентрировал свое рнимание на изучении кислотно-основного равновесия и разработке методов титрования в неводных средах Автор переведенных на многие языки книг, в частности таких, как Кон-дуктометрическое титрование (1923. русский перевод 1935), Потенциометрическое титрование (1927), Объемный анализ (т. 1 — 2, 1929, русский перевод 1930, 1932), Учебник количественного неорганического анализа (1936), [c.249]

    В 40—50-е годы прогресс советской аналитической химии чистых веществ был прежде всего связан с развитием атомной промышленности, которой необходимы высокочистые уран, цирконий, ниобий и другие металлы, а также графит. В этой области активно работали многие химики-аналитики, например П. Н. Палей. В 60-е годы или несколько раньше еще более чистые вещества потребовались электронной технике — германий, кремний, арсенид галлия и другие иолупроводники. Необходимо было наладить производство люминофоров, сцннтилляционных материалов, которые также должны отвечать жестким требованиям к чистоте. Перед химической промышленностью была поставлена задача изготовления особо чистых химических реактивов и большого числа чистых вспомогательных веществ. Стали существенно более чистыми металлы и сплавы, в частности применяемые как жаропрочные и химически стойкие. Аналитическая химия была призвана обеспечить новые области техники эффективными методами контроля. Главное требование состояло в нахождении способов определения ничтожных примесей в веществах содержание примесей часто составляет 10 —10-3%. Решение этой задачи требовало снижения предела обнаружения элементов во много раз. [c.106]


Библиография для Аналитическая химия в контроле производства: [c.257]    [c.323]    [c.323]    [c.242]    [c.213]    [c.560]   
Смотреть страницы где упоминается термин Аналитическая химия в контроле производства: [c.228]    [c.6]    [c.37]   
Курс аналитической химии Книга 1 1964 (1964) -- [ c.13 , c.15 ]

Курс аналитической химии Издание 3 (1969) -- [ c.15 , c.18 ]

Курс аналитической химии Издание 5 (1981) -- [ c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Аналитическая химия

Производство аналитический

контроле производства



© 2024 chem21.info Реклама на сайте