Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нулевой заряд

    По Оствальду, любое из этих значений можно было бы с тем же правом, как и величину —0,20 В, полученную для ртути в растворах поверхностно-инактивных веществ, принять за абсолютный нуль электродного потенциала и иметь множество совершенно различных абсолютных шкал потенциалов. Таким образом, потенциалы максимумов электрокапиллярных кривых не могут служить основанием для создания абсолютной шкалы потенциалов. В то же время эти потенциалы, названные Фрумкиным потенциалами нулевого заряда или нулевыми точками металлов, имеют принципиальное значение для электрохимии. На их основе Фрумкину удалось дать одно из наиболее удачных решений проблемы Вольта, о чем уже упоминалось ранее. Антропов показал важную роль, которую играют потенциалы нулевого заряда в электрохимической кинетике, и дал первые кинетические уравнения, в которых наряду с отклонением потенциала от равновесного фигурирует также отклонение его от нулевой точки электродного металла. [c.250]


Рис. 115. Зависимость потенциала нулевого заряда металлов V (0) от работы выхода электрона Рис. 115. Зависимость <a href="/info/609856">потенциала нулевого заряда металлов</a> V (0) от <a href="/info/4891">работы выхода</a> электрона
    Термины потенциал нулевого заряда (и. н. з.) и нулевая точка (н. т.) употреблялись как синонимы, что приводило и приводит к путанице. Представляется целесообразным, по предложению Антропова, разграничить эти понятия, присвоить каждому из них свой символ и употреблять в соответствии с их содержанием. Целесообразность такого разграничения подкрепляется следующей аналогией. Потенциал нулевого заряда S q= , подобно равновесному потенциалу может для данного металла и раствори- [c.250]

    Отсюда ясно, что в процессе титрования заряд частиц изменяется на обратный, проходя через так. называемую изоэлектрическую точку, отвечающую нулевому заряду частиц. В этой, и только в этой, точке осадок не содержит ни избытка Ag+, ни избытка 1 и точно соответствует своей формуле Agi. [c.326]

    Электродные потенциалы, отвечающие таким вполне реализуемым на опыте условиям, были названы А. Н. Фрумкиным потенциалами нулевого заряда (п. н. з) он же отметил, что действительные соотношения более сложны и уравнение (10.2) является приближенным. Если изменить составы растворов М]А и МгА, то добавочно появятся скачки потенциалов 1/1,, 1 и Уь, 2, которые примут участие в образовании э. д. с. в соответствии с уравнением (9.9). [c.213]

    ЛОМ между двумя разнородными металлами, либо гальвани-потен-циалами на стыке металлов и раствора, либо всеми тремя скачками потенциала. Иными словами, в одним случаях реализуется механизм образования э. д. с., постулированный физической теорией, в других — химической, в третьих — все скачки потенциала вносят свой вклад в величину э. д. с., т. е. в какой-то мере каждая из двух теорий отражает истинные соотношения. В этом состоит одно из решений так называемой проблемы Вольты, данное А. Н. Фрумкиным и основанное на концепции потенциалов нулевого заряда. [c.214]

    ПОТЕНЦИАЛЫ НУЛЕВОГО ЗАРЯДА И НУЛЕВЫЕ ТОЧКИ МЕТАЛЛОВ [c.249]

    Определение понятий потенциал нулевого заряда м нулевая точка , абсолютная, приведенная и рациональная шкалы потенциалов [c.249]

    Потенциалы нулевого заряда ртути (по водородной шкале) в одномолярных растворах ряда I — 1-зарядных электролитов, В [c.250]

    Один из методов определения потенциала нулевого заряда основан на измерении емкости двойного электрического слоя. При отсутствии специфи- [c.538]


    Следует подчеркнуть, что различие между нулевой точкой и потенциалом нулевого заряда вытекает и непосредственно из приро-д[11 электрохимических систем. [c.251]

    Если ё ь, м(ч)=0, ТО поверхность металла лишена заряда и потенциал электрода должен отвечать потенциалу нулевого заряда  [c.252]

    ПОТЕНЦИАЛ НУЛЕВОГО ЗАРЯДА [c.161]

    При изучении термодинамики электрохимических процессов достаточно знать, что изменение энергии электрохимического элемента полностью определяется химическими реакциями на электродах. Однако при изучении кинетических закономерностей необходимо также знать механизм электродных процессов. Изменения в строении двойного электрического слоя на электродах, которые не сказываются на равновесных значениях электродных потенциалов, влияют на скорости электрохимических реакций. Поэтому при изучении кинетики электродных процессов очень важно знать потенциалы нулевого заряда, а также молекулярное строение границы электрод — раствор. [c.536]

    Некоторые методы определения потенциалов нулевого заряда [c.538]

    С =Сг. Однако в достаточно разбавленных растворах (0,01 н. и меньше) при малых зарядах электрода (т. е. вблизи потенциала нулевого заряда) емкость диффузной части двойного слоя становится меньше емкости плотной [c.539]

    Потенциал, при котором поверхность металла не заряжена и соответственно отсутствует ионный двойной электрический слой, называют, по А. Н. Фрумкину, потенциалом нулевого заряда и обозначают V (0). [c.161]

    Потенциалы нулевых зарядов в электролите находят по этим экстремальным точкам поверхностных свойств металлов с помощью [c.161]

    Для разных металлов потенциалы нулевого заряда имеют различные значения (табл. 21 и 22). [c.162]

    Источником э. д. с. между металлами при V (0), по теории А. Н. Фрумкина, могут быть контактная разность потенциалов, а также адсорбция ионов и полярных молекул. Разность потенциалов нулевых зарядов двух металлов должна быть приблизи- [c.162]

    На рис. 115 приведена полученная Р. Н. Васениным линейная зависимость между потенциалом нулевого заряда и работой выхода электрона. [c.162]

    Обозначения величин и терминология, за немногими исключениями, согласуются с рекомендациями комиссии по электрохимии Международного союза по чистой и прикладной химии (ИЮПАК) (1973 г.). Для изменения рекомендаций или для отклонения от них в каждом случае имелись веские основания. Так, комиссия предлагает обозначать электродвижущую силу через mf в отличие от электродного потенциала, обозначаемого Е. Однако такое обозначение нельзя рассматривать как международное, поскольку оно представляет собой аббревиатуру английского термина Ele tromotive For e. В связи с этим для электродного потенциала и э.д.с. в книге используются соответствеино знаки S и Е, одинаково приемлемые дли J[юбoгo языка. Наряду с термином потенциал нулевого заряда <,=о введен ие предусмотренный рекомендациями комиссии термин нулевая точка I n, находящийся при- [c.3]

    Третье слагаемое в правой части уравнения (11.51) описывает характерные максимумы (пики) на кривых дифференциальной емкости в присутствии органического вещества, отражающие процессь адсорбции—десорбции. Вблизи потенциала нулевого заряда, где (1 —0) и ф мало отличаются от нуля, третьим слагаемым можно пренебречь, ц емкость двойного слоя в этих условиях определяется формулой для двух параллельных конденсаторов  [c.248]

    Нулевая точка (н. т.), подобно стандартному потенциалу, отвечает вполне определенному составу раствора. Нулевую точку, подобно стандартному потенциалу, можно попытаться рассчитат . теоретически, используя определенные ( )изические свойства металла и растворителя, чего нельзя выполнить для потенциала нулевого заряда и для равновесного потенциала. Сопоставлять между собой различные системы металл — раствор целесообразно по значениям стандартных потенциалов и нулевых точек. Связь между нулевой точкой и потенциалами нулевого заряда передает уравиение [c.251]

    Из уравнения (11.57) вытекает, что потенциал нулевого заряда зависит от природы металла и растворителя, от состава раствора и от электрода сравнения. Для выбранных металла и растворителя величина <4= может быть различной в зависимости от величии (т. е. от природы и концентрации поверхностно-активных ионов) и дип (т. е. от природы и концентрации поверхностно-активных дипольных молекул). Если же не только gt, =0, ио н и Ядим = Г- растворе нет никаких поверхностно- [c.252]

    Как следует из (11.58), это частное значение потенциала нулевого заряда (т. е. нулевая точка ) должно быть константой,, так как оно равно сумме трех посгояниых величин. [c.252]

    Теория Штерна дает качественно правильную картину двойного электрического слоя. Она широко используется при рассмотрении тех электрохимических явлений, в которых структура двойного слоя играет существенную роль. Но теория Штерна, как это отмечал сам автор, не свободна от мсдостатков. К их числу относятся невозможность количественного описания емкостных кривых — экспериментальные и расчетные кривые отклоняются друг от друга, особенно при удалении от потенциала нулевого заряда, несовместимость некоторых из ее основтых положений, например сохранение заряда в плотном слое при отсутствии специфической адсорбции, и т. д. [c.270]


    И следовательно, измеряемая разность потенциалов 11 2 между двумя различными металлами в нулевых растворах, т. е. разность между потенциалами их нулевого заряда, приблизительно равна по уравнениям (XX, 2) и (XX, 3) контактной разности потенциалов этих двух металлов в вакууме (вольта-потепциа-лу между ними). Этот вывод, впервые сделанный А. Н. Фрумкиным, был подтвержден экспериментально. Так, вольта-потенциал между двумя металлами в вакууме равен для жидких висмута и таллия —0,36 в, а разность потенциалов нулевого заряда этих металлов равна —0,35 в. Соответствующие величины для жидких олова и таллия равны —0,46 и —0,42 в. [c.536]

    Для жидкого металла (например, ртути) потенциал нулевого заряда электрода можно определить, измерив зависимость пограничного натяжения от потенциала электрода. В самом деле, при образовании двойного слоя электрические заряды металлической поверхности (безразлично, какого знака) взанмпо отталкиваются, и это отталкивание уменьшает пограничное натяжение а металла. Изменяя сообщенный металлу потенциал ср (относительно другого электрода), изменяют и плотность заряда двойного слоя и пограничное натяже11ие ртути. На рис. XX, 7 изображена зависимость пограничного натяжения ртути от потенциала — так называемая электрокапиллярная кривая. [c.539]

    Очевидно, в точке максимума кривой е = 0, и следовательно, потенциал металла, соответствующий максимуму электрокаииллярио11 кривой, является пoтeIп иaлoм нулевого заряда. [c.540]

    Потенциал нулевого заряда жидкого металла может быть также определен с помощью разомкнутого капельного электрода (см. гл, XXIV, 12). [c.540]


Библиография для Нулевой заряд: [c.4]   
Смотреть страницы где упоминается термин Нулевой заряд: [c.4]    [c.5]    [c.242]    [c.251]    [c.257]    [c.260]    [c.266]    [c.533]    [c.539]    [c.540]    [c.540]    [c.540]    [c.162]   
Основы полярографии (1965) -- [ c.14 ]

Полярографический анализ (1959) -- [ c.28 ]




ПОИСК







© 2025 chem21.info Реклама на сайте