Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ртуть потенциал нулевого заряда

    Для жидкого металла (например, ртути) потенциал нулевого заряда электрода можно определить, измерив зависимость пограничного натяжения от потенциала электрода. В самом деле, при образовании двойного слоя электрические заряды металлической поверхности (безразлично, какого знака) взаимно отталкиваются и это отталкивание уменьшает пограничное натяжение а металла. Изменяя сообщенный металлу потенциал ф (относительно другого электрода), изменяют и плотность заряда двойного слоя и пограничное натяжение ртути. На рис. XX, 7 изображена зависимость пограничного натяжения ртути от потенциала — так называемая электрокапиллярная кривая. [c.509]


    Чтобы получить электрокапиллярные кривые, можно применять ртутный электрод, так как ртуть при соприкосновении с раствором заряжается положительно. На границе ртуть — раствор возникает двойной электрический слой поверхностное натяжение уменьшается за счет электростатического отталкивания зарядов. Если положительный заряд ртути постепенно уменьшать, то поверхностное натяжение возрастает и при заряде, равном нулю, достигает максимума. Если далее придавать поверхности ртути отрицательный заряд и постепенно увеличивать его абсолютную величину, то поверхностное натяжение начнет снижаться. Эту зависимость выражают в виде электрокапиллярных кривых (рис. 51). Форма электрокапиллярных кривых и потенциал нулевого заряда яо определяются составом раствора, особенно наличием в нем ионов, способных адсорбироваться на поверхности электрода и образовывать двойной электрический слой или же вызывать изменение его структуры. Так, адсорбционный двойной электрический слой обусловливает определенные скачки потенциалов яо при отсутствии заряда электрода. При адсорбции катионов потенциал нулевого заряда Яо более положителен, чем потенциал нулевого заряда Яо,раствора в отсутствие катионов. Наоборот, адсорбция анионов смещает потенциал нулевого заряда яо" в область более отрицательных значений. [c.171]

    Из рис. 118 следует, что потенциал нулевого заряда ртути (при котором = О и Уд = 0) в растворах КС1 и НС1 У (0) = —0,2 В. На кривой дифференциальной емкости при этом потенциале наблюдается минимум, а емкость при положительном заряде поверхности (слева от нулевой точки) значительно выше (36 мкФ/см ), чем при отрицательном заряде (18 мкФ/см ). [c.167]

    Однако, если атомы водорода в молекулах этих соединений замещены атомами галоидов, то ситуация резко изменяется. Так, замена Н на F приводит к тому, что поверхностная активность органического вещества оказывается выше на границе раствор/ воздух, а замена Н на С1, Вг или I приводит, наоборот, к более высокой поверхностной активности на границе раствор/ртуть, причем эффект возрастает при переходе от хлора к брому и далее к йоду. Полученные результаты указывают на то, что специфическое взаимодействие с поверхностью ртути растет в ряду F< < H< i< Br< I. Причиной этого является усиление в том же ряду донорно-акцепторного взаимодействия между органической молекулой и поверхностью ртути, при котором электроны с атомов С1, Вг и I могут переходить на уровни зоны проводимости металла. Поэтому одновременно с увеличением поверхностной активности происходит соответствующее изменение сдвига потенциала нулевого заряда А д=о, вызванного адсорбцией органического вещества уменьшение положительного, а затем рост отрицательного значения Д д=о. [c.42]


    Потенциал нулевого заряда ртути в этом растворе (е,=о — потенциал нулевого заряда) равен —0,48 В (нкэ). [c.252]

    Уравнение (VII.8) показывает, что тангенс угла наклона касательной, взятый с обратным знаком, в каждой точке электрокапиллярной кривой равен плотности заряда поверхности ртути, соприкасающейся с раствором. У вершины капиллярной кривой наклон касательной равен нулю. Это подтверждает, что при потенциале максимума (фн) поверхность не имеет электрического заряда. С помощью электрокапиллярной кривой, на основании уравнения Липпмана, можно вычислить изменение плотности заряда р с изменением ф. Характер этой зависимости виден на рис. 36 (кривая р). Исследования показали, что потенциал нулевого заряда зависит от присутствия в растворе ионов или молекул поверхностно активных веществ, которые сильно искажают электрокапиллярные кривые. Экспериментально было найдено, что в зависимости от pH, состава раствора и особенно от присутствия поверхностно активных веществ (ПАВ), адсорбирующихся на поверхности ртути (рис. 37), потенциал нулевого заряда изменяется. Кроме того, выяснилось, что для различных электродов потенциалы нулевого заряда различны (табл. 31 и 32) и нет оснований считать какой-либо из них абсолютным нулем потенциалов . [c.209]

    Величину потенциала нулевого заряда ( ) можно определить экспериментально несколькими методами путем измерения меж-фазного натяжения, по минимуму емкости электрода, по определению краевого угла смачивания, по максимуму адсорбции и т.п. Наиболее широко для этих целей используются электрокапиллярные кривые, которые характеризуют зависимость между поверхностным натяжением металла (а) на фанице металл/раствор и потенциалом электрода. На величину поверхностного натяжения влияет и состав межфазного слоя. Поскольку поверхностное натяжение проще всего измерить для жидких металлов, большинство электро-капиллярных кривых получено на ртути. Измерения производились также с амальгамами металлов, с жидким галлием и с некоторыми [c.131]

    Большинство ПАВ наиболее сильно адсорбируется в области потенциала нулевого заряда ртути и подавляет максимумы [c.229]

    В рамках понятия потенциал нулевого заряда Л. И. Антропов предложил разграничивать такие понятия, как нулевая точка флг и потенциал незаряженной поверхности ф5=о, ранее употреблявшиеся как синонимы. По Л. И. Антропову, потенциал незаряженной поверхности соответствует максимуму электро-капиллярной кривой ртути (или другого металла) и может изменяться для данного металла в зависимости от природы и концентрации веществ в растворе. Нулевая точка — это частное значение потенциала незаряженной поверхности, полученное в растворе не содержащем поверхностно-активных веществ и которое является константой, характерной для данного металла и данного растворителя. [c.21]

    Потенциал нулевого заряда фк серебряного электрода при комнатной температуре в 0,1 N растворе нитрата калия равен —0,05 в по отношению к нормальному водородному электроду и — 0,22 в по отношению к насыщенному каломельному электроду [185]. Серебро является более благородным металлом, чем ртуть, поэтому на фоне некомплексообразующих электролитов потенциал восстановления серебра на ртутном электроде более положительный, чем потенциал анодного растворения ртути (Е = +0,4в по отношению к нас. к. э.). Наблюдаемый на практике потенциал восстановления серебра в этих условиях относится к потенциалу анодного растворения ртути [162], т. е. истинный потенциал восстановления серебра на капельном ртутном электроде определить невозможно. При использовании в качестве анода донной ртути волна восстановления серебра начинается от нулевого значения приложенной э. д. с. В растворах нитратов и перхлоратов щелочных металлов диффузионный ток восстановления серебра хорошо выражен и пригоден для аналитических целей. [c.124]

    Падение тока максимума при изменении потенциала по обе стороны от потенциала нулевого заряда обусловлено возрастанием торможения дви-жения поверхности электрода под влиянием электрического заряда двойного слоя. Заряженные частицы в результате движения поверхности накапливаются около шейки капли, вследствие чего в верхней части капли снижается поверхностное натяжение и тем самым тормозится движение поверхности ртути. Этот эффект торможения в уравнениях (26) и (27) [так же как и в [c.428]

    Форма электрокапиллярной кривой и потенциал нулевого заряда в значительной степени определяются составом раствора, в который погружена ртуть, особенно наличием в нем ионов или нейтральных молекул органических веществ, способных адсорбироваться поверхностью электрода. При этом адсорбированные частицы вызывают изменение структуры двойного электрического слоя, что оказывает влияние на величину поверхностного натяжения на границе ртуть—раствор и потенциал нулевого заряда. [c.327]


    Адсорбционные двойные слои обусловливают определенные скачки потенциалов тгд при отсутствии заряда электрода. При адсорбции катионов потенциал нулевого заряда более положителен, чем -Кд для раствора без добавки (см. рис. 131) адсорбция анионов приводит к смещению потенциала нулевого заряда в область более отрицательных значений (сравнить тг" и тг,,).Адсорбционный двойной электрический слой в точке нулевого заряда снижает максимальное поверхностное натяжение на границе ртуть—раствор (см. рис. 131). [c.328]

    По опытным данным строят электрокапиллярные кривые в координатах к—Е и, учитывая потенциал стандартного электрода, определяют потенциал нулевого заряда поверхности ртути в чистом растворе и в растворах, содержащих поверхностно-активные вещества, а также области потенциалов адсорбции добавок. [c.331]

    Потенциал нулевого заряда ртути в растворах различных электролитов при 25°  [c.31]

    Измерение потенциала нулевого заряда обычно дает первую константу интегрирования при анализе емкостных данных [уравнение (16)]. Пнз ртути можно измерить несколькими способами. Проще всего это делается по максимуму электрокапиллярной кривой [уравнение (4)]. Наиболее точным и часто употребляемым является метод струйчатого электрода. Поскольку ни один из этих методов к твердым электродам неприменим, приходится прибегать к иным способам. [c.81]

    Метод определения потенциала нулевого заряда, предложенный Гельмгольцем [ 52], основан на том допущении, что при сильном увеличении площади электрически изолированного электрода его потенциал должен приближаться к пнз. Это можно вывести из следующих соображений полный заряд идеально поляризуемого электрода должен оставаться постоянным, и поэтому при неограниченном увеличении площади электрода плотность заряда может быть сделана произвольно малой, так что потенциал должен приблизиться к пнз. Конечно, на практике условие идеальной поляризуемости выполняется лишь приближенно. Поэтому на потенциал может влиять разряд примесей (например, кислорода), присутствующих в растворе. Влияние небольших примесей можно устранить достаточно быстрым увеличением площ ади электрода, что обычно осуществляется путем впрыскивания тонкой струи ртути из капилляра в раствор. Путем подходящей обработки кончика капилляра и подбора скорости потока струя при сопри- [c.110]

    Минц и сотр. [267, 268] предложили для определения потенциала нулевого заряда использовать колеблющуюся поверхность раздела между ртутью и раствором. Поверхность раздела между ртутью и электролитом образуется в Т-образной трубке, соединенной с маленькой электролитической ячейкой с каломельным электродом сравнения. Колебания ртутного столбика, на конце которого образуется [c.497]

    В работах многочисленных исследователей было показано, что на ртутном электроде, даже при отрицательных зарядах поверхности, вблизи 3 хорошо адсорбируются различные поверхностно-активные анионы С1", Вг", J , N5 , 8Н и др. Такая адсорбция приводит к снижению пограничного натяжения на границе ртуть—раствор. На рис. 15 кривая 2 отражает зависимость а от ср при введении в растнор соли КВг присутствие КВг приводит к снижению пограничного натяжения. При этом наблюдается также смещение максимума пограничного натяжения, т. е. изменение значения на более отрицательное за счет того, что поверхность адсорбирует анионы брома. В результате адсорбции на поверхности ртути образуется вторичный двойной электрический слой, поскольку Вг -иопы, адсорбировавшись, электростатически притягивают из раствора катионы, которые частично компенсируют их заряд. Величина смещения потенциала нулевого заряда под действием адсорбции (в данном случае ионов брома) носит название адсорбционного потенциала  [c.33]

    Рассмотрим явление возникновения максимума несколько подробнее. При протекании электрохимической реакции на поверхности электрода в области значений потенциала положительнее значений потенциала нулевого заряда (фн.з), т. е. значений, соответствующих положительной ветви электрокапиллярной кривой, перетекание ртутной поверхности направлено от верхних частей капли к нижним, поскольку нижние части капли ртути, на которых плотность тока больше (что обусловливает возникновение более отрицательного потенциала), имеют большее пограничное натяжение. Приток разряжающегося вещества, обусловленный перемешиванием раствора, осуществляется главным образом сверху (рис. 42), что уменьшает концентрационную поляризацию, сдвигает потенциал верхних частей капли в положительную сторону и еще больше увеличивает разность потенциалов и разность пограничных натяжений между различными частями капли. Максимумы, вызванные такими явлениями, носят название положительных по своей величине они значительны. [c.100]

    Чем же можно объяснить различное влияние галоидов на ртуть и железо Было высказано предположение о том, что в кислых растворах, содержащих ионы галоидов, на поверхности железа возникают особые адсорбционные слои галоидов, обладающие пассивирующими свойствами как по отношению к реакции ионизации металла, так и реакции разряда ионов водорода. Диполи поверхностного соединения располагаются своим отрицательным концом в сторону раствора, что способствует сдвигу потенциала нулевого заряда в положительную сторону. Смещение же точек нулевого заряда в положительном направлении сопровождается повышением перенапряжения водорода и затруднением реакции ионизации металла. [c.27]

    Сущность работы. Знание зависимости поверхностного натяжения на границе раствор — металл от приложенного напряжения иоз воляет судить о строении двойного электрического слоя. Для исследования применяют метод электрокапиллярных кривых. Ето сущность состоит в постепенной поляризации ртутного катода и измерении поверхностного натяжения на границе раствор — ртуть. При катодной иоляризации ртути ее положительный заряд постепенно уменьшается, а поверхностное натяжение возрастает. При заряде, равном нулю, иоверхностное натяжение достигает максимума. Форма получаемой электрокапилляр-ной кривой и потенциал нулевого заряда, при котором поверхностное натяжение достигает максимальното значения, определяется составом раствора, наличием в нем поверхностно-активных веществ и, следовательно, природой и строением двойного электрического слоя. [c.184]

    При достаточно больших значениях ац, когда реориентация адсорбированных молекул сопровождается двумерной конденсацией (см. кривую 3 на рис. 2.16), а i< 2, модель трех параллельных конденсаторов предсказывает появление характерных ямок с отвесными стенками на С, f-кривых (см. рис. 1.12,6). В согласии с экспериментальными данными ширина этих ямок чрезвычайно резко изменяется с концентрацией адсорбата. Наконец, при фл/1>0 и фл 2<0 модель трех параллельных конденсаторов описывает изменение знака A ,=o при увеличении концентрации адсорбата сдвиг потенциала нулевого заряда в отрицательную сторону при низких Сд сменяется сдвигом Eq=,o в положительную сторону при высоких Са- Экспериментально такой эффект был зарегистрирован при адсорбции на ртути паратолуидииа и парафенилендиамина. [c.73]

    Однако в кажущемся противоречии с этим механизмом действия ПАОВ пересечение i, -кривых восстановления аниона ЗгОв в растворах камфары и оксигомоадамантана наблюдается при потенциале нулевого заряда, отвечающем чистой поверхности ртути, а не покрытой адсорбированным монослоем ПАОВ (см. рис. 5.16). Этот результат можно объяснить туннелированием электрона к реагирующей частице через поры в адсорбционном слое, которые заполнены молекулами воды, причем реагирующая частица в поры не проникает, а находится против них с внешней стороны монослоя. В этом случае перенос электрона не требует затраты работы, связанной с изменением электрического поля у электрода за счет адсорбции дипольных молекул ПАОВ, и ток не чувствителен к сдвигу потенциала нулевого заряда. В рамках этого механизма находит объяснение и вытекающая из уравнения (5.44) зависимость скорости разряда при почти полном заполнении поверхности электрода ПАОВ от (I—0), т. е. от числа пор в адсорбционном слое. В самом деле, с увеличением концентрации ПАОВ в растворе число пор сокращается и пропорционально уменьшается ток, обусловленный переносом через них электронов. [c.185]

Рис., 57. Зависимость сдвига потенциала нулевого заряда поверх- ности ртутн Дф, снижения поверхностного натяжения ртути Аа и содержания компонентов диссоциации серной кислоты от общей концентрации, водного раствора серной кислоты Рис., 57. <a href="/info/132039">Зависимость сдвига</a> <a href="/info/9031">потенциала нулевого заряда</a> поверх- ности ртутн Дф, снижения <a href="/info/133073">поверхностного натяжения ртути</a> Аа и <a href="/info/28399">содержания компонентов</a> <a href="/info/864281">диссоциации серной кислоты</a> от <a href="/info/5396">общей концентрации</a>, <a href="/info/678245">водного раствора серной</a> кислоты
    Исследования показали, что РГЭ представляет собой многокапельный электрод, поскольку ртуть не смачивает графит и не образует равномерной пленки на поверхности электродов из углеродных материалов, а находится в виде микрокапель, сгруппированных вблизи поверхностных дефектов (сколы, треш ины, царапины). Размер капель зависит от потенциала электрода и уменьшается при удалении от потенциала нулевого заряда. В качестве подложки для РГЭ применяют импрегнированные или прессованные графитовые электроды, стеклоуглерод, углеситалл, углеродное волокно. Следует отметить, что поверхность РГЭ, полученных in situ, отличается более равномерным распределением ртутных капель, чем в случае, когда покрытие получают предварительно, РГЭ сочетает в себе преимуш ества твердых и ртутных электродов, имеет широкий диапазон рабочих потенциалов и достаточно воспроизводимую поверхность, Кроме того, на РГЭ интерметаллические взаимодействия проявляются в меньшей степени и он менее чувствителен к влиянию ПАВ, чем твердые электроды, [c.88]

    Изменение потенциала нулевого заряда металлов под влиянием галогенид-ионов является специфичным для каждого хметалла. На ртути адсорбция галогенид-ионов, по Фрумкину [70], является обратимой, она носит электростатический характер, а отчасти и специфический, обусловленный образованием связей, близких к ковалентным. Энергия активации адсорбции из растворов невелика. При адсорбции галогенид-ионов на ртути они участвуют в формировании ионной части двойного электрического слоя, поэтому смещают потенциал нулевого заряда в отрицательную сторону. Однако на железе характер адсорбции иной и адсорбция, по мнению многих исследователей, носит необратимый характер. Ионы галогенидов, адсорбируясь необратимо, входят в состав металлической обкладки двойного слоя, их заряды составляют часть заряда поверхности металла, поэтому возникающие на поверхно-сти металла диполи смещают потенциал нулевого заряда в положительную сторону. Различный характер адсорбции галогенид-нонов на железе и ртути подтверждается емкостными и поляризационными измерениями на ртути адсорбция анионов увеличивает емкость двойного электрического слоя и ускоряет разряд ионов водорода, а на железе емкость падает и разряд ионов водорода замедляется. [c.131]

    Где i4—площадь пюверхностп электрода, j — интегральная емкость двойного слоя, m—скорость вытекания ртути (мг/с), t—время жизни капли (с) к Ех потенциал нулевого заряда (потенциал электрокагошл5фиого максимума). Для капающего ртутного электрода [c.418]

    Ряд электрокапиллярных кривых для типичного алифатиче ского соединения — и-амилового спирта и типичного ароматического соединения — фенола показан на рис. 39 и 40. Кривые заряд— потенциал, соответствующие рис. 40, приведены на рис 41. Имеются заметное понижение пограничного натяжения при добавлении адсорбата и сдвиг потенциала нулевого заряда в сторону положительных потенциалов для н-амилового спирта и в сторону отрицательных потенциалов для фенола. Фрумкин [5, 28, 29] пришел к заключению, что этот сдвиг для алифатических соединений вызван ориентацией диполей, причем диполи располагаются своими положительными концами по направлению к ртути ). Он также сравнил сдвиг потенциала нулевого заряда с изменением адсорбционного потенциала на границе раствор — воздух и получил хорошую корреляцию между этими величинами в случае алифатических соединений. Расхождение между этими двумя рядами данных наблюдается, однако, для ароматических веществ, как было показано Геровичем с сотр. [30—32]. Такое расхождение было объяснено предположением [c.107]

    Следует также учесть, что ноны гидроксила, которые являются поверхностно-инактивиыми на ртути, сильно адсорбируются на железе и других твердых металлах, выступая, как было выше показано, в роли катализаторов коррозионного процесса. Это также нарушает адсорбционное равновесие и уменьшает концентрацию органического вещества на поверхности металла. Помимо этого поликристаллические тела имеют различные значения работы выхода электронов из отдельных граней кристалла, а следовательно, и разные значения потенциала нулевого заряда, и обладают оби- [c.138]

    Выводы автора основаны в первую очередь на измерениях Грэма, в распоряжении которого был лишь галлий недостаточной чистоты. Измерения электрокапиллярных кривых и дифференциальной емкости, а также определение потенциала нулевого заряда, выполненные с галлием высокой степени чистоты (>99,9998%), привели, однако, к иным результатам [171—174]. При достаточно высоких отрицательных зарядах поверхности электрокапил-лярное поведение галлия действительно близко к поведению ртути разница между потенциалами, соответствующими одинаковым зарядам на обоих электродах, составляет 0,17 в. При смещении потенциала в положительную сторону наблюдается резкое возрастание дифференциальной емкости, которое в отличие от ртути не может быть объяснено специфической адсорбцией анионов. Причина его, по-видимому, заключается в изменении ориентировки адсорбированных диполей воды, которые по мере снижения отрицательного заряда поверхности поворачиваются своим отрицательным кислородным концом к поверхности галлия. Возможность такого изменения ориентировки привлекалась в случае ртути для объяснения появления горба на кривых дифференциальной емкости (гл. IV). Это явление, несомненно, сильнее выражено на поверхности галлия, что связано, по-видимому, с более сильной адсорбцией воды на незаряженной поверхности галлия по сравнению с поверхностью ртути. Более прочная адсорбция воды приводит также к заметным различиям между поведением анионов на обеих границах раздела. Так, ион СЮ " который положительно адсорбируется на ртути, обнаруживает отрицательную адсорбцию на границе раздела галлий/водный раствор. — Прим. ред. [c.135]

    В последние годы в основном в связи с разработкой топливного элемшта значительное внимание уделялось проблеме адсорбции на твердых электродах, таких, как платина и другие благородные металлы. Вопросы, возникающие при рассмотрении твердых электродов, значительно отличаются от аналогичных вопросов в случае ртути. Например, для твердых электродов нельзя пользоваться классическим термодинамическим методом вычисления поверхностного избытка вещества, поскольку здесь трудно измерить поверхностное натяжение и потенциал нулевого заряда В этих системах адсорбцию изучают методами, упоминавшимися в разд. III, Г,2, с применением разнообразной кулонометрической техники. Адсорбция атомарного водорода вблизи обратимого водородного потенциала, а также образование окиси платины (или адсорбция кислорода) при более положительных потенциалах еще более осложняет работу на платиновом электроде. Обратимость реакции выделения водорода на платине ограничивает область идеальной поляризуемости в кислых растворах приблизительно в пределах от 0,3 до 0,8 В (относительно обратимого водородного электрода). Потенциал нулевого заряда ртути относительно стандартного водородного электрода в водных растворах в отсутствие спеди-фической адсорбции составляет около -0,2 В. Поэтому адсорбцию на платине изучают в области потенциалов, не совпадайщей с рабочей областью на ртути (с анодной стороны). Далее, адсорбция на платине [c.135]

    Особо следует остановиться на адсорбции неполярных соединений, поскольку объяснить ее силами кулоновского взаимодействия нельзя. В работах Геровича [72] было показано, что бензол, нафталин, фенантрен и хризен хорошо адсорбируются на ртутя и смещают несмотря на неполярный характер потенциал нулевого заряда в отрицательную сторону, как и анионоактивные вещества. Причем адсорбируемость этих соединений при ф>0 возрастает с увеличением числа бензольных колец в молекуле органического вещества. Поскольку эти результаты ельзя истолковать, исходя из электростатики, поведение ароматических соединений было объяснено особенностями строения бензольного кольца. [c.134]

    Восстановление дисульфид-анионов вследствие электростатического отталкивания полем электрода, представляет еще большие трудности, чем в случае частиц S X", в результате наступает спад тока на волне серы до уровня, отвечающего преимущественному восстановлению частиц SgX . Интересно, что спад тока, обусловленный торможением главным образом реакции восстановления дисульфида, наступает при существенном удалении от потенциала нулевого заряда, как в случае специфически адсор" бирующихся анионов типа Pt lf [471. Это происходит потому, что скорость переноса электронов при восстановлении адсорбированного сульфида ртути относительно высока. Поэтому снижение скорости восстановления дисульфида до уровня, соизмеримого со скоростью диффузии, наступает только при значительных отрицательных зарядах поверхности. [c.407]


Смотреть страницы где упоминается термин Ртуть потенциал нулевого заряда: [c.162]    [c.311]    [c.19]    [c.43]    [c.231]    [c.191]    [c.231]    [c.131]    [c.113]    [c.140]    [c.267]    [c.268]    [c.42]    [c.113]    [c.129]    [c.134]   
Полярографический анализ (1959) -- [ c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал нулевого заряда

Потенциал нулевой



© 2025 chem21.info Реклама на сайте