Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойной электрический слой распределение ионов

Рис. 171. Строение двойного электрического слоя (/) на границе металл— раствор и распределение потенциала в ионной обкладке при различной концентрации раствора (//) а6 — плотная часть 6в — диффузная часть, ф — разность потенциалов между раствором и металлом 1)), 1)1 — падение потенциала в плотной и диффузной частях двойного слоя х — расстояние от поверхности металла Рис. 171. <a href="/info/72523">Строение двойного электрического слоя</a> (/) на границе металл— раствор и <a href="/info/511334">распределение потенциала</a> в <a href="/info/357904">ионной обкладке</a> при <a href="/info/1841315">различной</a> <a href="/info/2541">концентрации раствора</a> (//) а6 — плотная часть 6в — диффузная часть, ф — разность потенциалов между раствором и металлом 1)), 1)1 — падение <a href="/info/3387">потенциала</a> в плотной и <a href="/info/308048">диффузной частях двойного слоя</a> х — расстояние от поверхности металла

    Электрическое поле, создаваемое зарядом металла в окружающем его растворе, вызывает неравномерное распределение ионов в растворе вблизи металла. Если металл заряжен отрицательно (рис. 146), то катионы, находящиеся в растворе вблизи него, притягиваясь металлом, концентрируются около него, в особенности в слое, непосредственно прилегающем к поверхности металла. Анионы же отталкиваются металлом, и их концентрация в растворе вблизи металла будет понижена, в особенности в слое, непосредственно прилегающем к поверхности металла. В результате раствор вблизи металла приобретает заряд, противоположный по знаку заряду металла. Образуется двойной электрический слой. Этот слой характеризуется различным распределением ионов разного знака в поверхностном слое раствора и неодинаковым распределением зарядов в поверхностном слое металла. Он связан с определенной разностью потенциалов (скачком потенциала) на поверхности раздела металл/раствор .  [c.416]

    Эти явления связаны с наличием ионно-электростатических полей у границ поверхностей в растворах электролитов (двойной электрический слой). Распределение ионов в электролите у заряженной поверхности пористой среды имеет диффузный характер, т.е. противоионы не расположены в каком-то одном слое, за пределами которого электрическое поле отсутствует, а находятся у поверхности в виде "ионной атмосферы", возникающей вследствие теплового движения ионов и молекул жидкости. Концентрация ионов, наибольшая вблизи адсорбированного слоя, убывает с расстоянием от твердой поверхности до тех пор, пока не сравняется со средней их концентрацией в растворе. [c.181]

    Электрохимические процессы протекают в поле двойного электрического слоя, оказывающем сильнейшее влияние на энергетику и кинетику электродной реакции. Поэтому для понимания механизма электродных реакций и отличий их от реакций, протекающих в объеме раствора, необходимо иметь представление о структуре двойного электрического слоя, распределении зарядов, наличии адсорбированных ионов и молекул. При одинаковом изморенном потенциале знак заряда поверхности металла может быть различен в зависимости от положения точки нулевого заряда, знание которого поэтому необходимо для понимания особенностей электродных процессов, протекающих на различных металлах. [c.404]

    Существенно, что, варьируя ионный состав электролита, мол<-но менять толщину приповерхностного слоя. Например, ионы Са + способны вытеснять воду из области полярных головок и тем самым сжимать приповерхностный слой [430]. Обычно толщиной этого слоя пренебрегают и считают, что все поверхностные источники электрических полей строго локализованы на границе раздела бислой/липид, а сама эта граница считается геометрической плоскостью. Такое допущение позволяет проводить теоретический анализ электрических явлений на основе классической теории Гуи — Чепмена [431], в рамках которой структура двойного электрического слоя (ДЭС) определяется лишь поверхностными зарядами. При этом оказывается, что поверхностные электрические диполи, если они присутствуют в системе, не влияют на эту структуру. Существует целый ряд проблем, для которых предположение о локализации источников электрических полей строго на границе раздела является слишком грубым. Оказалось, что трехмерность распределения поверхностных электрических зарядов заметно влияет на элект- [c.150]


    Распределение потенциала в ионной обкладке двойного электрического слоя представлено на рис. 171, //. Величина скачка потенциала на границе раствор — металл складывается из падения потенциала ф в плотной части двойного слоя и падения потенциала [c.473]

Рис. 172. Влияние поверхностно-активных катионов на распределение потенциала в ионной обкладке двойного электрического слоя при отрицательном заряде электрода Рис. 172. Влияние <a href="/info/638341">поверхностно-активных катионов</a> на <a href="/info/511334">распределение потенциала</a> в <a href="/info/357904">ионной обкладке</a> <a href="/info/2476">двойного электрического слоя</a> при <a href="/info/17611">отрицательном заряде</a> электрода
    Вполне естественно предположить, что подобное строение двойного слоя возможно при отсутствии теплового движения ионов, Б реальных же условиях распределение зарядов на границе раздела фаз в первом приближении определяется соотношением сил электростатического притяжения ионов, зависящего от электрического потенциала фо, и теплового движения ионов, стремящихся равномерно распределиться во всем объеме жидкой или газообразной фазы. К такому выводу независимо друг от друга пришли Гун и Чепмен. Они предположили, что двойной электрической слой имеет размытое (диффузное) строение и все противоионы находятся в диффузной его части — в диффузном слое. Поскольку протяженность диффузного слоя определяется кинетической энергией ионов, то в области температур, близких к абсолютному нулю, все противоионы будут находиться в непосредственной близости к потенциалопределяющим ионам. [c.54]

    Наряду с указанными объяснениями механизма действия поверхностно-активных веществ высказано [7, 12] также предположение о влиянии адсорбированного вещества на скорость разряда иона. Торможение или ускорение разряда ионов металла поверхностно-активными веществами может быть обусловлено влиянием адсорбированного вещества на распределение потенциала на границе фаз. При этом изменяются как концентрация разряжающихся ионов в плотной части двойного электрического слоя, так и энергия активации самого акта разряда ионов. [c.347]

    При добавлении соли одного металла к раствору соли другого изменяется также состав или строение двойного электрического слоя. При этом концентрация каждого вида ионов уменьшается вследствие вытеснения одних ионов другими. В соответствии с новым установившимся распределением ионов в двойном слое изменится величина поляризации и, следовательно, скорость разряда каждого вида ионов. Однако учет этого фактора важен главным образом для сильно разбавленных растворов, которые в практике почти не применяются. [c.435]

    Один из механизмов связан с различной скоростью перехода разноименно заряженных частиц.из одной фазы в другую. Простейший случай образования двойного электрического слоя по такому механизму — испускание электронов поверхностью нагретых металлов (электронная эмиссия). В этом случае сам металл в сколько-нибудь значительном количестве не испаряется, эмиссия же электронов происходит легко, и поверхность металла заряжается положительно. Между поверхностью металла и окружающим ее внешним пространством возникает разность потенциалов. По достижении равновесного состояния распределение частиц в обеих фазах неравномерное положительно заряженный металл притягивает электроны из внешней среды, а они отталкивают электроны металла от его поверхности внутрь. В результате в поверхностном слое металла образуется избыток положительно заряженных ионов, а на поверхности внешнего пространства— избыток электронов. Такое распределение разноименно заряженных частиц и создает двойной электрический слой. [c.165]

    С другой стороны, находящиеся в жидкости ионы того же знака, что и адсорбированные стенкой потенциалопределяющие ионы, отталкиваются электрическими силами от твердой фазы и уходят в глубь раствора. Это обусловливает распределение потенциалопределяющих ионов и противоионов в диффузной части двойного электрического слоя, что иллюстрирует рис. VH, 8. [c.177]

    Из рассмотренных примеров следует, что образование двойного электрического слоя всегда тесно связано с адсорбцией на границе электрод — раствор ионов и полярных молекул. Чтобы изучить строение двойного электрического слоя, помимо адсорбционных данных необходимо знать приведенные потенциалы фо и заряды поверхности электрода д. На основе этих данных далее строится модель двойного слоя, описывающая распределение заряженных частиц и потенциала в зависимости от расстояния до поверхности электрода, а эти сведения используются в теории электрохимической кинетики. [c.147]

    Распределение потенциала в ионной обкладке двойного электрического слоя представлено на рис. 171, II. Величина сКачка потенциала на границе раствор —металл складывается из падения потенциала ф в плотной части двойного слоя и падения потенциала ф1 в диффузной. Строение двойного электрического слоя определяется общей концентрацией с раствора. С ее увеличением процессы, способствующие формированию диффузной части, ослабляются, раз- [c.473]


    Развитие количественной теории ней-трализационнОй коагуляции — актуальная задача общей проблемы устойчивости ионостабилизированных коллоидных растворов. В принципе она может решаться двумя путями. Первый — строго теоретический, основанный на учете в картине строения двойного электрического слоя размеров ионов, их поляризуемости и сольватации, дискретности зарядов, функции распределения ионов вне пределов применимости уравнения Пуассона — Больцмана. При этом одновременно должна быть развита теория адсорбции ионов и установлены связанные с ней закономерности изменения потенциала частиц. Как легко видеть, этот путь весьма сложный [c.154]

    Следует иметь в виду, что двойной электрический слой, существующий возле поверхности металла в растворе, не всегда позволяет объяснить ход электрохимических процессов. Это понятие упрощенно, оно усредняет действительное распределение потенциала, поскольку поверхность металла или другого тела не является идеальной геометрической поверхностью, а состоит из отдельных обособленных ионов с пространственно разделенными дискретными электрическими зарядами. [c.230]

    Однако такая простая картина строения двойного слоя может дать правильное представление о распределении зарядов на границе твердое тело—жидкость только в условиях низких температур и больших концентраций раствора электролита при большой плотности поверхностного заряда. В большинстве же случаев двойной электрический слой, состоящий из реальных носителей электрических зарядов — ионов, имеет более сложное строение. Под действием молекулярного теплового движения в жидкости ионы стремятся распределиться равномерно в рас- [c.28]

    Распределение потенциала в двойном электрическом слое на основе описанной модели, учитывающей дискретный характер специфически адсорбированных ионов, представлено на рис. 70. Если разделить уравнение (25.27) на заряд электрода и учесть общее соотношение [c.124]

    Золь — система, состоящая из коллоидных частиц, распределенных в жидкой или газообразной среде. Если такой средой является вода, систему называют гидрозолем. Коллоидная частица золя гидроксида железа (III) состоит из ядра, образованного гидроксидом железа (III), адсорбционно связанных с ним потенциалообразующих водородных ионов (nii") и некоторого количества ионов хлора [(и -х)СП, меньшего, чем количество ионов водорода, в результате чего коллоидная частица имеет положительный заряд. Ионы водорода и входящие в состав частицы противоионы хлора образуют двойной электрический слой. Отдельные ионы хлора (хС1 ) образуют диффузионный слой и вместе с коллоидной частицей составляют мицеллу золя гидроксида железа (Ш). [c.318]

    При наличии сильной специфической адсорбции ионов, происходящей под действием химических сил или сил Ван-дер-Ваальса, например адсорбции аниона на поверхности ртутного электрода, общий заряд ионов в плотном слое может оказаться больше заряда поверхности электрода. Такое явление называется перезарядкой поверхности. В этом случае потенциал на расстоянии ионного радуса от поверхности электрода (-ф -потенциал) имеет знак, противоположный знаку разности потенциалов между электродом и раствором. Распределение потенциала в двойном электрическом слое в этом случае схематически представлено на рис. XX, 6. [c.538]

    На границе соприкосновения различных фаз (например, металл -электролит) возникает пространственное распределение электрических зарядов в виде так называемого двойного электрического рлоя. Разделение зарядов может вызываться различными причинами переходом ионов из электрода в раствор (или наоборот) - ионный двойной электрический слой специфической адсорбцией ионов на поверхности электрода - адсорбционный слой ориентацией полярных молекул растворителя и поверхности электрода - ориентационный слой. Во всех случаях двойной слой электронейтрален. [c.36]

    Строение двойного электрического слоя в отсутствие специфической адсорбции. Под строением двойного слоя понимают распределение зарядов в его ионной обкладке. Упрощенно ионную обкладку можно условно разделить на две части 1) плотную, или гельмголь-цевскую, образованную ионами, практически вплотную подошедшими к металлу 2) диффузную, созданную ионами, находящимися на расстояниях от металла, превышающих радиус сольватированного иона (рис. 171, /). Толщина плотной части.порядка 10 см, диффузной — 10 —10 см. Согласно закону электронейтральности [c.473]

    Электрофорез [1—3]. Движение заряженных частиц под влиянием внешнего электрического поля и находящихся во взвешенном состоянии в неподвижной жидкости называется электрофорезом. Это явление можно представить себе следующим образом. Частицы жидкости окружены двойным электрическим слоем. При приложении электрического поля распределение зарядов частиц в дуффузном слое нарушается вследствие смещения их по отношению к частице и непрерывного обмена ионными атмосферами вокруг частиц. В то же время сами частицы под действием электрического поля движутся по направлению противоположно заряженного полюса. Измерив скорость движения частиц и зная градиент потенциала приложенногс электрического поля, можно рассчитать электрофоретическую подвижность частиц С/эф (так назьшают путь, проходимый частицей за одну секунду в поле с градиентом потенциала 1 в/см). Тогда [c.168]

    Однако прочно к поверхности ионы К+ не присоединяются (они образуют с поверхностью растворимые соединения), а так как их концентрация около поверхности больше, чем в растворе, то они диффундируют в сторону меньшей концентрации, т. е. от поверхности в раствор. На поверхности кристалла Ag l возник двойной электрический слой (рис. 36), состоящий из внутренней обладки, или адсорбционного слоя (ионы 1 ), и наружной обкладки, или слоя противоионов (ионы К+). Часть противоионов связана с поверхностью относительно прочно и входит в плотный слой остальные противоионы, со-вершаюшие тепловое движение около поверхности, составляют диффузную часть ДЭС (диффузный слой). Распределение противоионов между плотной и диффузной частями ДЭС определяется соотношением между электростатически.м притяжением ионов к поверхности и их диффузией в раствор последняя определяется тепловым движением ионов и зависит от разности концентраций в ДЭС и объеме раствора. [c.65]

    В растворах потенциалопределяющих ионов наблюдается сложная зависимость дзета-потенциала от концентрации. Избыток ионов в среде может привести к перемене зарядов и потенциалов двойного электрического слоя (ДЭС). Изменение потенциалов может произойти за счет специфической адсорбции. согласно правилу Фаянса. По этой причине с увеличением концентрации ионов значение С ПО-тенциала уменьшается, переходит изо- 3, распределение ио-электрическую точку, затем изменяет ццд падение потенциала знак заряда и снова увеличивается до в двойном электрпческом определенного предела. Для амфотерных при сверхэквивалент-веществ (А Оз, белки и др.) получены адсорбции [c.81]

    Равновесное распределение, ионов, которое устанавливается у твердой стенки, аналогично равновесному распределению молекул газа в атмосфере под влиянием силы тяжести с тем лишь различием, что гравитационное поле не зависит от распределения молекул, а электрическое поле в случае двойного электрического слоя само является функцией распределения заряженных ионов. Число противоионов, находящихся у заряженной поверхности твердой фазы, по мере увеличения расстояния от границы раздела по направлению внутрь раствора, уменьшается по закону распределения Больцмана, а число потенциалопределяющих ионов увеличивается согласно тому же закону. Отсюда следует, что если концентрацию положительных и отрицательных ионов в точке, потенциал которг "i равен фж, соответственно обозначить через с+ и (в молях на единицу объема), то для расстояния а =00 [c.178]

    Следует заметить, что при выводе уравнений (VII, 42) и УП,44) был сделан ряд упрощений и не вполне обоснованных допущений. Прежде всего, как уже было указано при рассмотрении строения двойного электрического слоя, схему, из которой мы исходили, нельзя считать удовлетворительной. Двойной электрический слой, согласно новейшим представлениям, надо представлять не плоскопараллельным конденсатором, а конденсатором, одна из обкладок которого состоит из диффузно распределенных ионов. Часть этих ионов -находится в приповерхностном слое и отстоит от твердой поверхности на меньшем расстоянии, чем плоскость скольжения. В результате этого электрокинетический потенциал соответствует не всему заряду на поверхности стенки, а разности между общим поверхностным зарядом и зарядом всех ротивоионов, находящихся в приповерхностном слое. Поведение такого слоя при электрофорезе или электроосмосе следует представлять себе так, как это показано на рис. VII, 19 б. Правда, такое представление о двойном электрическом слое не обесценивает приведенный вывод, так как этот слой по-прежнему можно рассматривать как электрический конденсатор. Возникает лишь вопрос о том, насколько допустимо при количественных выводах приравнивать расстояние I, на котором происходит изменение скорости течения жидкости в двойном слое, к усредненному расстоянию между обеими обкладками электрического конденсатора с размытой внешней обкладкой. [c.201]

    Из ЭТИХ данных видно, что двойной электрический слой в дистиллированной воде и разбавленных растворах электролитов достигает значительной толщины. Поскольку объем молекулы воды может быть приравнен кубу с ребром в 0,0003 мк, то ясно, что при соответствующем разбавлении раствора ( 10- н.) толщина двойного слоя во много раз превосходит размеры молекул растворителя (воды). Этот вывод имел больщое значение в развитии предстаЬлений о строении двойного электрического слоя, так как в нем впервые учитывается влияние концентрации раствора электролита на распределение ионов на границе раздела фаз. Если известен состав раствора, его концентрация и емкость двойного слоя С, то по уравнению (15), вводя вместо т1о его выражение через я по уравнению Гуи, можно найти т)о в зависимости от 1ро. Ряд данных по значению я)) в зависимости от фо при С =18 мкф1см , взятых из работ А. Н. Фрумкина и его сотрудников, приведен в виде графика на рис. 15 для одновалентного электролита. Из графика видно, что с увеличением концентрации электролита строение двойного слоя становится менее диффузным и приближается к гельмгольцевской картине двойного слоя. [c.33]

    Отсюда мы можем непосредственно перейти к рассмотрению механизма движения частицы, взвешенной в жидкости и окруженной двойным электрическим слоем (рис. 77, а) в электрическом поле. При наложении электрического поля распределение ионов в диффузном слое нарушается, и происходит смещение подвижных ионов за пределами границы скольжения между твердым телом и жидкостью, тогда как сама частица с плотным слоем получает импульс в противополол ную сторону (рис. 77, б). [c.127]

    С другой стороны, влияние поверхностных состояний на распределение поля двойного слоя в полупроводнике качественно аналогично влиянию специфически адсорбированных ионов на распределение потенциала в ионном двойном слое. В обоих случаях происходит уменьшение скачка потенциала г)) или г Зо — за счет роста скачка потенциала в слое Гельмгольца. По аналогии со стронием границы металл — раствор, когда д=—и г1зо=0, возможны такие поверхностные состояния, при которых падение потенциала в объеме полупроводника обращается в нуль г]35=0. Поведение такого полупроводника с точки зрения двойного электрического слоя приближается к поведению метал--лического электрода. [c.142]


Смотреть страницы где упоминается термин Двойной электрический слой распределение ионов: [c.28]    [c.274]    [c.537]    [c.175]    [c.179]    [c.186]    [c.194]    [c.119]    [c.119]    [c.121]   
Курс коллоидной химии (1976) -- [ c.186 ]




ПОИСК





Смотрите так же термины и статьи:

Двойной электрический

Двойной электрический слои

Двойной электрический слой

Двойной электрический слой ионов

Ионы двойные

Распределение на ионитах

Слой ионита

Электрический двойной слой ионо



© 2025 chem21.info Реклама на сайте