Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сферолиты оптическая картина

    Существенным является факт совместного существования в кольцевом сферолите а- и р-модификаций, как ранее отмечено в работе [4], который служит еще одним подтверждением образования кольцевых сферолитов путем ритмической кристаллизации 15—7]. Однако ранее для ПУДЭГ и ПУТЭГ нами было обнаружено обратное явление, т. е. кольцевые сферолиты растут в температурных областях с одной кристаллической модификацией, и их оптические картины скорее согласуются с гипотезой строения кольцевых сферолитов, предложенной авторами [8, 9]. [c.109]


    Фигуры погасания, показанные на рис. 19, могут быть объяснены с точки зрения кооперированной ориентации посредством скручивания следующим образом. На рис. 19, а и 19, б показаны соответственно оптически одноосные и двуосные фибриллы, скручивающиеся вдоль нормали к оптической оси в первом случае и вдоль линии, перпендикулярной плоскости двух оптических осей,— во втором. В обоих случаях принимается, что фибриллы полностью лежат в плоскостях сферолитов и равномерное скручивание дает правовращающий винт с одинаковой фазой у всех фибрилл. Нулевое погасание двойного лучепреломления будет наблюдаться в каждом случае, когда оптическая ось направлена перпендикулярно предметному столику микроскопа, вызывая расположенные на одинаковом расстоянии друг от друга простые или двойные кольца погасания. Кресты, как и в случае, рассмотренном ранее, соответствуют нулевой амплитуде погасания, когда фибриллы лежат параллельно направлениям поляризатора и анализатора. Расстояния между чередующимися кольцами в радиальном направлении обычно составляют величину порядка 10 мк и меняются при переходе от одного полимера к другому. У каждого данного полимера это расстояние зависит от температуры кристаллизации, увеличиваясь при ее повышении [50]. Иногда расстояние между кольцами превышает, однако, 100 лк, и тогда прямое подтверждение ориентационного скручивания методом дифракции рентгеновских лучей становится исключительно трудным. Тем не менее Фудзиваре [29] удалось этим методом показать постепенное скручивание в направлении радиусов у сферолитов полиэтилена. Наличие кооперированной ориентации скручивания у других полимеров было подтверждено методом микроскопии путем изучения систематических изменений фигур погасания при рассмотрении сферолитов на универсальном столике Федорова под различными углами наклона [48, 49, 59, 109, ПО]. Фигуры, показанные на рис. 19, в и 19, г, также объясняются ориентацией скручивания. Например, зигзагообразные кресты были найдены как у одноосных, так и у двуосных полимеров, у которых скрученные фибриллы имеют кристаллографические ориентации, не допускающие расположения оптических осей в тангенциальных направлениях. Более сложная фигура, изображенная на рис. 19, г, особенно интересна, так как она иллюстрирует на примере такого одноосного полимера, как полиэтилен, обычное различие поперечных сечений глобулярных и двумерных сферолитов, выросших в тонких пленках. В первом случае фибриллы лежат в плоскости сечений, образуя фигуры погасания такого типа, как показано на рис. 19, а. Однако во втором случае температурные градиенты, возникающие вдоль пленки полимера во время кристаллизации [49], могут вызвать наклон фибрилл к плоскости сферолитов на несколько градусов. Такие наклоны неизменно приводят к образованию круглыми сферолитами зигзагообразных крестов, и при интерпретации картин, даваемых образцами, закристаллизованными в виде тонких пленок, всегда следует иметь в виду возможность этой необычной ориентации фибрилл в таких случаях. У сферолитов наблюдается как правое, так и левое скручивание, по-видимому, с равной вероятностью, и каждый сферолит вообще поделен на ряд секторов то с правым, то с левым ориентационным скручиванием [49, 52]. На практике ориентационное скручивание не так хорошо координировано, как это показывают идеализированные фигуры на рис. 19, хотя может быть, как видно из рис. 20 (сравните с рис. 19, г), при благоприятных условиях довольно правильным. [c.453]


    Закристаллизованные области в полимерном теле обычно оптически анизотропны. Эта анизотропия вызвана анизотропным ориентационным и координационным порядком в расположении цепных молекул в кристаллич. решетке полимера. Картина возникающего при этом Д. л. зависит от характера надмолекулярных структур, образовавшихся в закристаллизованном полимере. В фибриллярных структурах наблюдается осевой ориентационный молекулярный порядок и соответственно оптич. анизотропия, ось к-рой направлена вдоль по фибрилле (волокну). При этом знак Д. л. определяется знаком анизотропии цепных молекул, а значение Д. л. может служить мерой средней степепи их ориентации в волокне (фибрилле). Широко распространенным типом кристаллич. форм, обнаруживаемых в микроскоп по их Д. л., являются сферолиты. При наблюдении сферолита, полученного кристаллизацией полимера в тонком слое, в параллельных лучах и скрещенных поляроидах виден темный крест, центр к-рого совпадает с центром сферолита, а оси параллельны плоскостям поляризатора и анализатора. Малое значение Д. л. у сферолитов означает, что степень упорядоченности субмикроскопич. монокристаллов в них невелика. Если известен знак оптич. анизотропии молекул полимера, то по знаку Д. л. сферолита можно судить о направлении в нем молекулярных цепей. Так, отрицательное Д. л. сферолитов полиэтилена соответствует тому, что его положительно анизотропные молекулы ориентированы в сферолите в тангенциальных направлениях (вдоль оси с кристалла). [c.332]

    Наиболее хорошо сферолиты различимы при рассмотрении тонких пленок или срезов полимеров в оптическом микроскопе в поляризованном свете. Это связано с тем, что сферолитам присуща анизотропия оптических свойств из-за радиальной симметрии их строения. Поэтому показатели преломления света в радиальном и тангенциальном направлениях различны, и в поляризованном свете видны типичные для сферолитов картины двулучепре-ломления (см. рис. 3.12). Наблюдаемая картина объясняется тем, что ориентация кристаллографических осей в сферолите непрерывно меняется по угловой координате. Этому соответствует такое же непрерывное изменение показателей преломления по отношению к плоскости поляризации падающего света. Поэтому различные области сферолита по-разному пропускают поляризованный свет. Это приводит к возникновению светлой круговой двулуче-преломляющей области, пересеченной темной фигурой в форме мальтийского креста, плечи которого параллельны направлениям гашения падающего света. Такие сферолиты называют радиальными (см. рис. 3.12, а на вклейке). Если значение показателя преломления, измеренного в радиальном направлении, больше, чем в тангенциальном, то такой сферолит называют положительным, в противном случае говорят об отрицательном сферолите. [c.91]

    Необходимо отметить еще один вариант, основанный на наблюдении фраунгоферовой дифракции и оказавшийся очень полезным для изучения рассеяния от волокон [25]. На рис. 9 показана схема формирования картины рассеяния и изображения объекта. В верхней части рисунка а) приведена оптическая схема и ход лучей при формировании увеличенного изображения. Рамкой 5 моделируется волокно (нить) или группа волокон, а темным кружком (объект I )—элемент внутренней структуры, например сферолит На рисунке изображен лишь один элемент увеличение их числа не изменяет хода рассуждений. На нижней части рисунка (б) приведен [c.26]


Смотреть страницы где упоминается термин Сферолиты оптическая картина: [c.344]    [c.64]    [c.10]    [c.22]    [c.31]   
Кристаллизация полимеров (1966) -- [ c.315 ]




ПОИСК







© 2025 chem21.info Реклама на сайте