Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гибкость цепи и молекулярный вес

    Число кинетических сегментов, характеризующих кинетическую гибкость цепи, определяется как отношение М/Ме, где Л1 — молекулярная масса образца, а iWe — молекулярная масса отрезка цепи между зацеплениями, [c.89]

    Неясным остается и вопрос о соотношении вязкости разбавленных и концентрированных растворов полимеров. Известно, что чем лучше растворитель, тем больше характеристическая вязкость и меньше наклон прямой зависимости приведенной вязкости от концентрации (рис. 2). Но если это так, то эти прямые должны пересекаться и при больших концентрациях полимера вязкость раствора должна быть тем больше, чем хуже в термодинамическом смысле растворитель. Это подтверждается опытом, особенно для растворов жесткоцепных полимеров в. Следовательно, принципиально нельзя переносить закономерности разбавленных растворов на концентрированные. Для последних должны быть найдены теоретические соотношения между вязкостью, оптическими и другими свойствами, гибкостью цепи, молекулярным весом с учетом структурных особенностей растворов при разных концентрациях полимера. [c.86]


    Термодинамическая гибкость цепи и вращение в боковых группах. Существует определенная корреляция между гибкостью изолированной цепи и Тс. Но поскольку одновременно с уменьщением гибкости растет, как правило, и меж-молекулярное взаимодействие, то неясно, влияет ли она в действительности на температуру стеклования полимеров. Увеличение свободы внутреннего вращения в боковых группах понижает Тс, даже если при этом привески становятся все более массивными [2]. [c.44]

    Из изложенного ясно, что все эти параметры не зависят от молекулярной массы, характеристичны для макромолекул данного строения и несколько различным образом описывают способность молекулярных цепей сворачиваться в пространстве — степень их свернутости. Обычно эти параметры определяют термином равновесная (термодинамическая) гибкость цепей. [c.31]

    Температуры перехода полимеров зависят от строения полимера, молекулярной массы (см. ниже рис. 6.2, б), молекулярной неоднородности и гибкости цепей. Соединения со сравнительно низкой молекулярной массой (олигомеры) практически не имеют высокоэластического состояния. Такие соединения могут существовать в капельно-жидком состоянии (например, новолачные фенолоформальдегидные олигомеры). Чем ниже молекулярная масса, тем ниже температуры текучести Ту и стеклования и становится более узким интервал высокоэластического состояния. С увеличением молекулярной массы этот интервал расширяется вследствие большего влияния молекулярной массы на Ту, чем на Т . При сравнительно высокой молекулярной массе полимера перестает от нее зависеть, так как эта температура определяется главным образом длиной статистических сегментов, а не макромолекул в целом. При достаточно высокой молекулярной массе может начаться деструкция полимера до начала вязкого течения. У таких полимеров вязкотекучее состояние отсутствует. [c.151]

    Свойства растворов полимеров зависят не только от молекулярной массы, но и от формы макромолекул. В растворе цепные макромолекулы принимают конформации статистического клубка, свободно перемещающегося в растворителе. Размер клубков, т.е. степень свернутости, зависит от природы полимера, определяющей гибкость его макромолекул, на которую в свою очередь влияет длина макромолекул и, следовательно, молекулярная масса. Предельные формы клубков - рыхлые клубки, свободно протекаемые растворителем, и плотные клубки, непроницаемые для растворителя. В растворах полиэлектролитов на гибкость цепей действует [c.165]

    Наличие в них химических связей, сильно отличающихся энергиями, когда атомы в цепях макромолекул соединяются химическими связями, имеющими энергии порядка сотен кДж/моль, а макромолекулярные цепи связываются друг с другом молекулярно-поляризационными или водородными связями с энергиями до 30 кДж/моль. 2. Гибкость цепей, обусловленная вращением звеньев. [c.33]


    Алфрей [28] установил, что для решения многопараметрического уравнения состояния, подобного приведенному выше, необходимо определить более чем один структурный параметр, влияющий на поведение материала. Так, параметр эффективная плотность сшивания , используемый в кинетической теории упругости каучуков для оценки степени молекулярно-структурного сшивания, в данном случае недостаточно полно отражает состояние полимера, и требуется определение дополнительных структурных характеристик, например гибкости цепей, плотности энергии когезии И пр, [c.572]

    Известно, что свойства любого твердого тела определяются строением и взаимным расположением образующих его молекул. В течение ряда лет считали, что все физические свойства полимерных тел полностью определяются строением макромолекул (молекулярной массой, гибкостью цепей). Большая заслуга в объяснении механических свойств полимеров на структурной основе принадлежит советским ученым и в первую очередь академику В. А. Каргину, который установил, что одной из важнейших особенностей полимеров является многообразие их надмолекулярных структур. Если термин строение полимеров характеризует общие черты молекулярной упорядоченности (определенным образом расположенных друг относительно друга макромолекул), то термин структура полимеров характеризует более детальные отличия молекулярной упорядоченности в полимерах. [c.18]

    Здесь надо отметить, что длина сегмента макромолекулы в растворе определяется не только гибкостью цепи, но и ассоциацией макромолекул или их участков. Как мы видели, ассоциация зависит как от природы растворителя, так и от природы макромолекул, т. е. от содержания в них полярных или ионогенных групп, по которым может устанавливаться связь. Таким образом, кажущийся молекулярный вес является величиной весьма условной, о чем никогда не следует забывать. [c.453]

    Недостатком указанного метода является то, что в действительности Км — величина непостоянная, ее значение зависит от молекулярного веса гомологов. Ки уменьшается с увеличением молекулярного веса полимергомологов в результате роста гибкости цепей полимеров (см. выше). Поэтому значения молекулярных весов, полученные этим методом, обычно несколько занижены. [c.222]

    Макромолекулы линейных полимеров характеризуются высокой степенью асимметрии. Поэтому отдельные участки вытянутой молекулярной цепи настолько удалены друг от друга, что взаимное влияние становится ничтожно малым. Вследствие этого некоторые участки молекулярной цепи при растворении (когда подвижность и гибкость цепи возрастает) и при процессах деформации полимера ведут себя как кинетически самостоятельные единицы. Такие участки молекулярной цепи называют сегментами. Размер участка молекулярной цепи, проявляющего кинетическую независимость (сегмента), не является постоянной и зависит от гибкости молекулярной цепи и условий, в которых находится полимер (температура и концентрация раствора, природа растворителя, температура, величина и скорость приложения нагрузки прн деформации). Благодаря подвижности отдельных сегментов молекулярной цепи при их тепловом движении макромолекула непрерывно меняет свою форму конформацию), и так как число возможных конформаций изогнутой молекулы очень велико, а вытянутая только одна, то макромолекула большую часть времени имеет изогнутую форму, что очень важно для понимания особенностей свойств растворов и процессов деформации полимеров. [c.44]

    Высокоэластическое состояние полимеров обусловлено гибкостью их молекулярных цепей, т. е. сегментальной подвижностью молекул. Основным определяющим свойством полимера, находящегося в высокоэластическом состоянии, является способность к большим, практически полностью обратимым деформациям под действием небольших нагрузок. Отсюда, как следствие, низкие значения модуля упругости (0,02—0,08 кГ/лиг ), т. е. того же порядка, как у газов (0,01 кГ/мл ). [c.255]

    Молекулярный вес, при котором достигается постоянство температуры стекловапия, зависит от кинетической гибкости цепи полимера. У полимеров с очень гибкими цепями (полиизобутилен) приобретает постоянное значе ше, начиная с М ЮОО у поли меров, цепи которых обладают малой кинетической гибкостью, температура стеклования становится постоянной при М== [c.197]

    Увеличение числа последовательно чередующихся звеньев в макромолекулах при полимеризации или поликонденсации приводит к постепенному изменению свойств полимера. Однако по достижении больших значений молекулярной массы показатели этих свойств стремятся к постоянному значению. Это относится к прочности, теплостойкости, твердости и ряду других физических свойств полимеров. Температура стеклования полимера также является функцией его молекулярной массы С увеличением молекулярной массы температура стеклования вначале быстро повышается, а затем стремится к постоянному значению, которое зависит от кинетической гибкости цепи полимера. В полимерах с гибкими цепями температура стеклования приобретает постоянное значение , начиная с молекулярной массы порядка 1000—5000. В полимерах о жесткими цепями температуры стеклования становятся постоянными при молекулярных массах порядка 10 000—20 000 1 Биверс определил зависимость температуры стеклования Тс полиакрилонитрила от среднечислового значения молекулярной массы Мп в интервале от 8240 до 3 260 ООО. [c.83]


    Для абсолютно жестких цепей а = 2 для рыхлых клубков, свободно протекаемых растворителем, а = 1 для клубков, частично протекаемых растворителем, О < <я < 1. Обычно у реальных полимеров 0,5 < а < 1. Низкие значения а (< 0,5) характерны для глобулярных частиц. У целлюлозы в ее растворителях значение а обычно лежит в пределах 0,6...0,95. Таким образом, средневязкостное значение молекулярной массы в зависимости от гибкости цепей полимера близко к или значительно меньше. Подробнее теория этого метода, растворители для целлюлозы и методики определения рассматриваются в [30]. [c.177]

    Как известно, ВМС способны к образованию термодинамически равновесных молекулярных растворов с особыми термодинамическими свойствами, обусловленными гибкостью цепей макромолекул, обладающих больщим числом конформаций. Вместе с тем исследования последних лет показали, что для этих систем характерно развитие процессов ассоциации макромолекул в растворах в зависимости от характера взаимодействия макромолекул друг с другом и с молекулами растворителя и от концентрации раствора макромолекулы могут существовать либо в виде гибких цепей (статистических клубков), либо как плотные глобулы свернутых цепей, либо в виде ассоциатов друг с другом. При развитой мозаичности — различии полярности участков цепей макромолекул — они, как указывалось, могут обладать значительной поверхностной активностью для подобных веществ характерна также резко выраженная склонность к агрегированию молекул и их глобулизации наряду со способностью к солюбилизации нерастворимых в данной среде веществ. [c.236]

    Влияние на гибкость макромолекулы молекулярной массы заключается в том, что с ростом последней увеличивается число возможных конформаций. Это приводит к тому, что даже жесткие цепи начинают сворачиваться, и макромолекулы как бы приобретают свойство гибкости. [c.22]

    Гибкость цепи определяется тем, насколько легко протекает вращение вокруг главных валентных связей. На вращение оказывает влияние энергетический барьер, величина которого примерно такого же порядка, что и сил молекулярной когезии [1—5 ккал/моль (4,2—20,8 Дж/моль)]. [c.156]

    Высокомолекулярными соединениями (ВМС) называют вещества, имеющие относительную молекулярную массу приблизитель ио от 10 000 до нескольких миллионов. Размеры макромолекул а вытянутом состоянии могут достигать до 1000 нм и более, т. е. оии соизмеримы с размерами частиц ультрамикрогетерогенных дисперсных систем. ВМС, состоящие из большого числа повторяю-нгихся одинаковых звеньев, называются полимерами. Однако часто под полимерами подразумеваются все ВМС. Большой молекулярной массой и гибкостью цепей макромолекул объясняются специфические свойства ВМС и нх растворов, такие, как способность образовывать волокна н пленки,эластичность, набухаемость. Твердые ВМС чаще имеют аморфную структуру, чем кристаллическую. Темиературы их разложения существенно ниже температур кинения, что объясняет невозможность перевода ВМС в газообразное состояние. По этой причине для ВМС характерны только твердое н жидкое состояния. [c.305]

    Определяющей характеристикой сетчатой структуры полимера является молекулярная масса, или размер участка цепи между двумя сшитыми звеньями (узлам1и). От размера этих участков зависит проявление свойств индивидуальных макромолекул в сетчатой структуре полимера. Если эти участки значительно больше размеров сегмента макромолекулы, то сетчатый полимер сохранит, в принципе, основные свойства, присущие исходному полимеру (например, высокоэластичность. химическая реакционноспособность). Такой сетчатый полимер будет ограниченно набухать в характерных для исходного полимера растворителях. Если же размер участка цепи между сшитыми звеньями (узлами) близок к размеру сегмента или меньше его, то свойства исходного полимера существенно изменяются резко падает гибкость цепи, а, следовательно, уменьшаются высокоэластические свойства, снижается или теряется совсем способность к набуханию в растворителях данного полимера. [c.296]

    Поликарбонаты, как и политерефталаты, отличаются высокой кристалличностью. Кристаллизация поликарбоната наблюдается только выше температуры стеклования, т. е. выше 150 . Степень кристалличности полимера п степень ориентации в расположении кристаллов оказывают решающее влияние на прочностные характеристики. При кристаллизации поликарбоната образуются мельчайшие кристаллические области, не нарушающие прозрачности полимера. Кристаллитные образования характеризуются стабильностью вследствие жесткости макромолекулярной цепи, в состав которой входит большое количество фениленовых групп [107], снижающих гибкость макромолекул. Молекулярный вес применяемых в технике поликарбонатов колеблется от 20 ООО до 80 ООО. [c.714]

    Твердые полимеры образованы длинными цепными макромолекулами различного строения. Звенья молекулярной цепи полим[еров обладают способностью к взаимному вращению, что в макромолекуле приводит к гибкости цепи. Величина гиб шсти цепей зависит от химического строения цепи (потенциального барьера внутреннего вращения), [c.254]

    Попытки приписать аморфным полимерам какую-то опре-денную структуру с позиций физики неоднородных систем лишены смысла. А ведь доходило до курьезов, когда (к счастью, это не проникло в научную печать) аморфные полимеры предлагалось переименовать в морфные , чтобы подчеркнуть обязательное наличие там определенных морфоз. С другой стороны, можно совершенно отчетливо говорить о влиянии гибкости цепей на состояние аморфных полимеров. Чем жестче цепи, тем больше будет проявляться тенденция к спонтанному образованию мезофазы, но в то же время тем в большей степени будут вырождаться релаксационные переходы. Особое место занимает состояние блок-сополимеров, являющееся аморфным на молекулярном уровне и суперкристаллическим — на надмолекулярном (более подробней см. гл. ХП). [c.89]

    Релаксационные явления в полимерах. Как указывалось выше, особенности деформационных свойств полимеров, в том числе и аномалия вязкости, являются следствием релаксационного механизма деформации. Существенной особенностью полимеров является то, что релаксационные процессы перегруппировки цепных макромолекул и их агрегатов под действеим внешних сил протекают чрезвычайно медленно, не заканчиваясь иногда в течение многих суток. При действии внешних сил на простые жидкости величины сил межмолекулярного взаимодействия и размеры молекул таковы, что эти перегруппировки при комнатной температуре протекают очень быстро, за ничтожные доли секунды (10 —10 с). Очевидно, что чем выше вязкость при прочих равных условиях, тем медленней протекают релаксационные процессы. Естественно ожидать у полимеров, обладающих очень длинными молекулами и имеющими огромную вязкость, больших значений этого времени. Однако гибкость цепей полимера чрезвычайно усложняет релаксационные процессы. Гибкость макромолекул полимера означает некоторую свободу движения отдельных ее частей. Перемещение же этих участков, размеры которых могут быть весьма различны в разные моменты времени и в разных местах макромолекул, будет происходить с различной скоростью. Поэтому у полимеров наблюдается сложный ралексационный процесс, состоящий из множества одновременно идущих простых релаксационных процессов с весьма различными временами релаксации. Макромолекулы, кроме того, способны к образованию различных надмолекулярных структур и имеют различную молекулярную массу. Все эти образования обладают различной подвижностью и разным временем релаксации. Поэтому релаксационные процессы в полимерах могут быть описаны с помощью широкого набора времен релаксации, содержащего как очень малые, так и очень большие их значения, т. е. спектром времен релаксации. [c.21]

    Статистический сегмент таких полимеров может достигать 1йО и более звеньев. Жесткоцепными являются полиэфиры и полиамиды. содержащие атомы, способные к образованию сильных меж-молекулярных водородных связей. Жесткость цепей возрастает, если в макромолекулах содержатся большие по объему и массе заместители. Конформационные переходы в таких макромолекулах требуют значительной энергии и длительны. При невысоких те.мпературах они практически отсутствуют, а при высоких проявляются благодаря увеличению общей кинетической гибкости цепей. [c.22]


Смотреть страницы где упоминается термин Гибкость цепи и молекулярный вес: [c.188]    [c.31]    [c.62]    [c.207]    [c.110]    [c.104]    [c.210]    [c.204]    [c.204]    [c.339]    [c.240]    [c.421]    [c.189]    [c.190]    [c.199]    [c.204]    [c.204]   
Физикохимия полимеров (1968) -- [ c.89 , c.91 ]




ПОИСК







© 2025 chem21.info Реклама на сайте