Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Срезы полимеров

    Дальнейшее исследование полученных поперечных срезов показало, что расплав может проникать под слой твердого полимера и время от времени полностью охватывать его часто сплошность твер -дого слоя нарушается, и расплав заполняет образовавшиеся полости (см., например, разд. 15.5). Такое нарушение сплошности твердого слоя, как оказалось, происходит в конусной части червяка п является причиной колебаний производительности экструдера (т. е. приводит к появлению флуктуаций температуры, давления и расхода во времени), а также причиной появления в экструдате некоторого количества воздушных пузырей. [c.430]


    В прозрачных полимерах дендриты легко обнаруживаются невооруженным глазом или с помощью микроскопа, в непрозрачных полимерах дендриты можно обнаружить после изготовления тонких срезов полимера вблизи высоковольтного электрода. Установлено, что электрические дендриты в полимерах представляют собой полые трубочки диаметром около 1 мкм, постепенно сужающиеся на конце. Это доказывается специальными опытами, в которых ветки дендритов заполняют жидкими флуоресцирующими составами. В процессе образования дендрита выделяются газообразные продукты разложения полимера. [c.147]

    Изучение в электронном микроскопе непосредственно пленок или срезов полимеров имеет то преимущество, что параллельно с визуальным наблюдением морфологии можно получать электронограммы, дающие информацию о структуре образцов. Однако следует учитывать и влияние электронного пучка на образец, обусловливающее часто его плавление или изменение морфологии кристаллических образований По мнению Келлера, даже по этим искаженным картинам можно достаточно полно судить об исходной морфологии полимера . [c.66]

    Все методы исследования с помощью просвечивающего электронного микроскопа разделяют на прямые и косвенные. При прямых методах в микроскопе исследуют непосредственно объект в виде очень тонкой пленки (среза) или мельчайших частиц (определение формы и размера частиц высокодисперсных систем, изучение структуры биологических объектов, полимеров, металлов и т. п.). При косвенных методах в микроскопе рассматривают не сам объект, а отпечаток этого объекта. Отпечаток иначе называют слепком или репликой. Метод реплик применяют для исследования рельефа различных поверхностей, а также таких объектов, как кристаллы льда или гели, которые невозможно исследовать непосредственно в микроскопе. Существенным недостатком электронной микроскопии является невозможность наблюдения образца в динамических условиях, т. е. в движении, так как препарат должен быть высушен или заменен репликой. [c.395]

    В прозрачных полимерах дендриты легко обнаруживаются невооруженным глазом или с помощью микроскопа, в непрозрачных полимерах дендриты можно обнаружить после изготовления тонких срезов полимера вблизи высоковольтного электрода. о, 64 Установлено, что дендриты в полимерах представляют собой полые трубочки диаметром около э QJ2  [c.85]

    С помощью микротома были сделаны ультратонкие срезы полимера, взятого из широких трещин, которые были получены в поликарбонате при повышенной температуре Из фотографий срезов идно, что материал имеет полосатую структуру, которая располагается поперек трещины, т. е. параллельно первоначальному направлению действия напряжений, которые вызвали образование [c.259]


    Твердый полимер. Получают тонкий срез полимера на микротоме и затем его растягивают и надевают на стеклянное кольцо. Если полимер не вполне твердый и плохо режется на микротоме, то предварительно его замораживают твердой двуокисью углерода и затем уже режут на микротоме. [c.84]

    Твердые смазки, не имеющие слоистой структуры (металлы, полимеры и т. п.), проявляют смазывающее действие в результате малого сопротивления срезу образующихся мостиков адгезии. Будучи нанесенными тонким слоем на металлическую поверхность, они создают положительный градиент механической прочности трущихся материалов и тем самым обеспечивают устойчивое внешнее трение с малыми силами трения. [c.205]

    Полимер с ленты срезается ножом и проталкивается специальным устройством в мастикатор, где подвергается гомогенизации, дегазации, а затем направляется на упаковку. [c.340]

    Наиболее хорошо сферолиты различимы при рассмотрении тонких пленок или срезов полимеров в оптическом микроскопе в поляризованном свете. Это связано с тем, что сферолитам присуща анизотропия оптических свойств из-за радиальной симметрии их строения. Поэтому показатели преломления света в радиальном и тангенциальном направлениях различны, и в поляризованном свете видны типичные для сферолитов картины двулучепре-ломления (см. рис. 3.12). Наблюдаемая картина объясняется тем, что ориентация кристаллографических осей в сферолите непрерывно меняется по угловой координате. Этому соответствует такое же непрерывное изменение показателей преломления по отношению к плоскости поляризации падающего света. Поэтому различные области сферолита по-разному пропускают поляризованный свет. Это приводит к возникновению светлой круговой двулуче-преломляющей области, пересеченной темной фигурой в форме мальтийского креста, плечи которого параллельны направлениям гашения падающего света. Такие сферолиты называют радиальными (см. рис. 3.12, а на вклейке). Если значение показателя преломления, измеренного в радиальном направлении, больше, чем в тангенциальном, то такой сферолит называют положительным, в противном случае говорят об отрицательном сферолите. [c.91]

    Трибоэлектричество связано с переносом электрического заряда и возникает при соприкосновении двух различных материалов, причем этот эффект сильно увеличивается при их трении друг о друга. В процессах переработки полимеров проблема трибоэлектричества возникает на всех стадиях транспортировки полимеров [20]. Частицы пыли притягиваются к отформованным изделиям, инородные частицы попадают в наносимый полимерный слой, полимерная стружка прилипает к отливкам, с которых срезаются литники, пленки обвиваются вокруг роликов и прилипают к приводным ремням и направляющим пластинам. Волокно при формовании накапливает заряд, препятствующий его дальнейшей переработке на стадиях вытяжки и прядения. Когда накопленный заряд достигает больших значений, он может разряжаться на близлежащие предметы с образованием искры, вызывая пожары, или ударять при прикосновении, [c.92]

    Заканчивая анализ поперечных срезов (рис. 12.8), рассмотрим другие детали физических процессов, протекающих в винтовом канале червяка. Относительное движение поверхности цилиндра, направленное поперек винтового канала, увлекает за собой расплав и перемещает его к заполненному расплавом участку канала,находящемуся у толкающей стенки, одновременно создавая поперечный градиент давления и циркуляционное течение. Это гидродинамическое давление несомненно способствует дроблению твердой пробки полимера, расположенной у передней стенки винтового канала. А так как расплавленный полимер непрерывно удаляется из пленки расплава за счет относительного движения цилиндра, то твердый слой должен начать двигаться по направлению к поверхности цилиндра. В то же время нерасплавленный полимер скользит по витку вследствие этого ширина пробки, движущейся по каналу, непрерывно уменьшается до тех пор, пока пробка, наконец, полностью не исчезнет. С другой стороны, в данном сечении винтового канала размеры пробки остаются во времени неизменными. Таким образом, налицо все элементы установившегося процесса плавления, сопровождающегося удалением расплава вследствие вынужденного течения (см. разд. 9.8). Более того, подобный механизм плавления может существовать только в тонкой пленке расплава у поверхности цилиндра. Учитывая также существенное различие между интенсивностью плавления без и с удалением образовавшегося расплава, мы приходим к выводу, что плавление на сердечнике червяка (даже при проникновении расплава под твердый слой) так же, как взаимодействие между слоями расплав- [c.430]

    Следует отметить, что механизм трения пластиков в целом подобен механизму трения металлов, а коэффициент трения приблизительно равен отношению сопротивления среза к пределу текучести и не зависит от нагрузки. Однако в области малых нагрузок по мере их понижения коэффициент трения увеличивается. Предполагается, что в отличие от металлов, для которых деформация в области контакта носит чисто пластический характер, у твердых полимеров при малых нагрузках происходит упругая деформация. Для пластмасс в широком диапазоне изменения нагрузок выполняется общий закон деформации, отвечающий промежуточному характеру деформации между чисто пластическим и чисто упругим. [c.363]


    Прямые методы заключаются в том, что в электронном микроскопе исследуется непосредственно объект в виде очень тонкой пленки или мельчайших частиц. Эти методы применяют для определения формы и размера частиц высокодисперсных систем, а также для изучения структуры биологических объектов, полимеров, металлов и др. За последние годы были разработаны конструкции микротомов, позволяющие получать ультратонкие срезы препаратов порядка 200—500 А, которые пригодны для. прямого наблюдения в электронном микроскопе. [c.174]

    Метод ультратонких срезов широко применяют для исследования распределения различных наполнителей и ингредиентов в полимерах, для исследования структуры смесей полимеров, а в некоторых случаях и для исследования надмолекулярных образований в полимерах. [c.182]

    Следует иметь в виду, что аморфные полимеры, имеющие некоторую ориентацию молекул (например, растянутая пленка) проявляют двойное лучепреломление, наблюдаемое в поляризационном микроскопе. Это прело 1-ление исчезает вблизи температуры стеклования и не проявляется вновь при охлаждении. Следует также иметь в виду, что кусочки разрезанного образца неориентированного полимера вводят некоторое добавочное двойное лучепреломление вокруг острых линий среза вследствие ориентации при срезе. Следовательно, такие образцы будут казаться более блестящими вокруг линий среза при наблюдении между скрещенными николями. [c.61]

    Интересно, что характер излома образцов полипропилена прп длительных испытаниях изменяется. Прп больших напряжениях, разрушающих материал за относительно короткое время, излом появляется после довольно значительной деформации. Такой излом называют вязким. При меньшей величине напряжения и, следовательно, более длительном силовом воздействии происходит разрушение образца без резко выраженной деформации (хрупкий излом). Изучение срезов с места излома в поляризованном свете микроскопа показывает, что в случае вязкого излома возрастает ориентация сферолитов, приводящая в конечном счете к их полному исчезновению, в то время как хрупкий излом проходит по границе раздела между совершенно неориентированными сферо-литами. При больших напряжениях (высокие скорости деформации) аморфные области полимера не успевают компенсировать напряжения, которые возникают в материале, и часть энергии расходуется на разрушение кристаллических образований, тогда как ири медленной деформации твердые кристаллиты остаются нетронутыми, и деформация до момента разрыва образца происходит в аморфных областях на их границе раздела. [c.104]

    Разрушающее напряжение при растяжении, изгибе и срезе у ПЭНД достигает соответственно 45, 38 и 36 МПа. Изменение разрушающего напряжения при растяжении и относительного удлинения при разрыве от температуры для трех типов полимеров показано на рис. 1.11. Эти характеристики определялись для ПЭНД и СЭП на образцах толщиной 1 мм при скорости растяжения зажимов 100 мм/мин, а для ПЭВД —на образцах толщиной 2 мм и скорости растяжения зажимов 500 мм/мин. [c.31]

    В электронном микроскопе рассматривают либо слой полимера толщиной 10-20 нм, либо слепок с его поверхности, так называемую реплику. В первом случае используют тонкие пленки, которые получают выливанием и испарением разбавленного раствора полимера на поверхность воды, ртути и т.п., или тонкие срезы, полученные с помощью ультратома. [c.355]

    При работе с растровым микроскопом исключается длительная и кропотливая работа по подготовке препарата (реплики, ультра-тонкие срезы и т.п.). Вся процедура подготовки полимерного образца сводится к напылению на его поверхность слоя токопроводящего металла толщиной 2,5 нм и выше. Большие размеры образца, возможность вращения и перемещения его в камере микроскопа на значительные расстояния (до 5 см) делают РЭМ незаменимым инструментом для исследования поверхностей, изучения морфологии надмолекулярных образований в кристаллических и аморфных полимерах [11]. [c.357]

    Для идентификации материалов в первую очередь применяют ИК-спектроскопию. Для установления типа полимера материал экстрагируют и исследуют с помощью различной техники (рефракция на гладких и мягких поверхностях, пропускание света на тонких срезах, пиролиз). [c.583]

    В исследованиях полимеров применяют два основных метода просвечивающую электронную микроскопию (ПЭМ) и растровую, или сканирующую, электронную микроскопию (РЭМ, или СЭМ). В ПЭМ используют довольно сложные методики подготовки образцов. Образцы готовят либо прямыми методами в виде ульт-ратонких срезов или тонких пленок, получаемых выливанием разбавленных растворов полимеров на поверхность воды или другой жидкости, либо косвенным методом в виде реплик (копий с поверхности изучаемого материала), пластмассовых или угольных. Для повыщения контрастности электронных микрофотографий используют напыление металлов на полимерный объект или реплику, нанесение других контрастирующих веществ. Иногда перед получением реплик объект замораживают в жидком азоте и раскалывают. [c.144]

    Стабилизованный полимер срезают с ленты вручную ножом, и специальное устройство проталкивает его на горячие валки смесителя-мастикатора 7, нагреваемые паром до 130—140 °С. В смесителе происходит гомогенизация и дегазация полимера от легколетучих примесей, после чего полиизобутилен поступает а упаковку. [c.207]

    P. С о г i s с h. Инфракрасные спектры ультра. онких микротомных срезов полимеров. I. Характеристика и определение структуры вулканизованных наполненных сажей резин, J. Appl. Polymer S i., 4, 86 [c.126]

    С о г i S h P. J., Изучение сверхтонких срезов полимеров, полученных с помощью микротома, методом инфракрасной спектроскопии, ч. II. Идентификация вулканизированных каучуков и их неорганических наполнителей, J. Арр1. Polymer Sd., 5, ЛЬ 13, 53 (1961) РЖФиз, 1962, 1В261. [c.281]

    С о r i s h P. J., Изучение сверхтонких срезов полимеров, полученных с помощью микротома, методом инфракрасной спектроскопии, ч. I. Характеристика и определение структуры каучуков с наполнителем в виде сажи, J, Appl, Polymer Sei., 4, № 10, 86 (1960) РЖФиз. 1961, 9Д79. [c.286]

    Стабилизированный полимер срезается с ленты ножом и проталкивается специальным устройством на горячие валки масти-катора 7, обогреваемые паром (до 130—140°С), где он гомогенизируется и дегазируется от легколетучих примесей. [c.336]

    Суспензия полимера, из которой выделен НАК, из аппарата 9 поступает в сборник 12, откуда периодически насосом подается на вакуум-барабан-ный фильтр 13 для отделения полимера от маточного раствора. Полимер с барабана срезается ножом в транспортный желоб. Сюда же одновременно подается вода для смывания полимера в репульпа-тор 14. В аппарате 14 полимер отмывается от остатков мономера и инициатора. Из репульпатора пульпа подается па вакуум-барабанный фильтр 15. После фильтрации полинак с влажностью 80— 85% сушат в сушилке с кипящим слоем 16 или в вакуум-гребковых сушилках до содержания влаги 0,7-1,5%. [c.47]

    Оптическая микроскопия с фазовым контрастом, основанная на различиях в коэффициентах рефракции полимеров, широко используется для исследования бинарных полимерных смесей. Оптическая система микроскопа позволяет осуществить сдвиг по фазе между дифрагированным и пропускаемым светом, что приводит к получению интерференционной картины даже при очень небольших различиях в коэффициентах рефракции. Использование оптической микроскопии для исследования микрогетерогенности смеси каучуков первоначально было предложено для ненаполненных систем. При анализе срезов толщиной 1-4 мкм никакого тонирования фаз не требуется, так как контраст достигается вследствие различия в показателях преломления эластомеров. Метод успешно использован для широкого круга смесей каучуков. Оптическая микроскопия с фазовым контрастом требует исследования очень тонких образцов ( 1-4 мкм), которые могут быть получены с помощью криогенного среза по технологии, описанной в стандарте ASTM D 2663. Автоматизированный анализ реплик был впервые использован для определения совместимости в различных смесях полимеров. [c.575]

    Прямым методом электронно-микроскопического анализа изучают также структуру различных композиционных материалов, полимеров и т. д., делая с них срезы. Ультратонкие срезы толщиной не более 200 нм получают с помощью специальных приборов — ультрамикротомов. Образец закрепляют на конце обогреваемого стержня, совершак )-щего колебательные нли вращательные движения. Прн движении образец подходит к ножу 1У Икротома, который снимает е него тонкий срез. За промежуток времени между двумя последовательными колебаниями стержень с образцом нагревается и расширяется. Регулируя скорость нагревания, можно получит срезы различной толщины. Образующиеся срезы надают на поверхностг, жидкости, откуда их переносят на сетки с пленкой-подложкой. [c.125]

    Медленный рост трещин в поликарбонате, также являющемся стеклообразным полимером, будет еще более сложным процессом по сравнению со случаем ПММА. При низких температурах (7<—40°С) на дважды закрученном образце были получены значения Кс, равные (2,6—3,4) МН/м [19], которые не зависели от скорости роста трещины при малых значениях последней (а<10 м/с), но зависели от толщины образца и температуры. При более высоких скоростях роста трещины (а 10 м/с) значения Кс медленно нарастали. Однако в образцах ДКБ с двусторонней выемкой (ДВ—ДКБ) коэффициент Кс уменьшался с увеличением а в области значений а<10 м/с [20]. Такую зависимость подтвердили Камбур и др. [21], которые экспериментально получили значение Ос = 8,2 кДж/м при а = 2,5-10 м/с и значение Ос =12 Дж/м при а = 300 м/с. Исследование микрофотографий, полученных при медленном разрушении пластин (В = 12,7 мм), позволило выявить образование губ среза (связанных с расходом энергии) шириной 0,4 мм (смешанный тип распространения трещины). При высоких скоростях губ среза не обнаружено. Для сополимера ПК с силиконовыми блоками авторы работы [21] смогли увеличить сопротивление разрушению этого материала развитию трещины в области температур Т> — 110°С. В этом материале рост трещины смешанного типа не зависел от скорости. [c.356]

    Исследование структуры полимеров с помощью злектронных микроскопов можно проводить непосредственно а образцах полимера, приготовленных в виде ультрато,нких срезов, или на специально изготовленных образцах для растровых микроскопов (прямые методы), либо на слепках-репликах с поверхности полимера (косвенные методы). Применение косвенных методов вызвано разрушением полимера в электронном луче, что искажает картину структурного рельефа, роме того, применение косвенного метода позволяет получить высокое разрешение (до 0,3 нм). В то же время косвенные методы трудоемки и требуют специальной подготовки поверхности полимера. [c.111]

    Полимеры, которые находятся при комнатной температуре в застеклованном состоянии, можно микротомировать без дополнительных обработок. Однако эластомеры необходимо отверждать перед изгото- влением ультратонких срезов. Существует несколько приемов отверждения эластомеров перевулканизация хлоридом серы заполимери-зовывапие в метилметакрилат или другой мономер, дающий твердый полимер замораживание образца. [c.182]

    Способ замораживания образца лишен этого недостатка, однако он более сложен. Исследуемый образец полимера охлаждают ниже те.мнературы стеклования с использованием различных дополнительных приспособлений, которые позволяют сохранять образец в замороженном состоянии во время срезания, и микротомируют. По этому способу удается получать достаточно тонкие срезы каучуков, имеющих различные температуры стеклования. [c.182]

    При прямых методах исс.иедования, т. о. при исследовании непосредственно объекта в виде ультратонких срезов и пленок, часто также прибегают к методам контрастирования, которые ос]юваны на пропитывании объекта веществами, содержащими тяжелые металлы с большой рассеивающей способностью по отношению к электронам. Этот метод, по аналогии со световой микроскопией, применяющей окрашивание животных илп растительных тканей, используют, главным образом, нри исследовании биологических объектов или полимеров для получения сведений об их морфологической структуре. [c.189]

    Для электронно-микроскопического исследования полимеров применяются тонкие пленки, получаемые нз очень разбавленных растворов при выливании и па поверхность водь[, глицерина или другой жидкости, либо тонкие срезы (100—200А), получаемые при помощи ультрамикротомов. Кроме того, применяют так называемый метод реплик. [c.119]

    После наложения груза материал начинает вьщавливаться через сопло. Перву выдавленную порцию полимера (приблизительно /з) отбрасывают. Последующие по цин срезают через определенные промежутки времени острым ножом в виде жгутии и взвешивают. [c.233]

    Разработанные в настоящее время экспериментальные методы определения коэффициентов диффузии основаны на использовании всех представленных выше уравнений, т. е. связаны с измерением градиента концентрации, изучением кривых распределения концентрации по расстоянию, определением скорости перемещения изоконцентрационной плоскости, измерением кинетики поглощения растворителя полимерным телом. Для этого используют оптические методы, методы срезов, весовые и объемные измерения, метод меченых атомов и т. д. Экспериментальные методы исследования диффузии низкомолекулярных веществ в полимерах подробно описаны в ряде работи поэтому в данной главе не рассматриваются. [c.19]

    Разновидностью технологии дифференциального набухания является помещение образцов вулканизатов в смесь бутил- и метилак-рилата, содержащую небольшое количество инициатора полимеризации (пероксида бензоила). Таким образом достигается повышенная степень набухания и облегчается подготовка образцов (при комнатной температуре) для ТЭМ. Метакрилат полимеризуется лишь частично, легко разрушается и удаляется из срезов при их бомбардировке электронами. Травление электронным пучком снижает толщину слоя более набухшего полимера (например, НК в смесях с БСК и СКД) и приводит к более четкому фазовому разделению, чем набухание среза, полученного криоскопически. Таким способом было определено распределение технического углерода в ряде полимерных смесей и установлено, что наиболее предпочтительно его расположение в БСК, которое близко для СКД, хлорированного каучука и БНК. Значительно меньше ТУ содержится в НК, затем в СКЭПТ и наименьшее количе- [c.579]

    Диспергирование технического углерода в смесях полимеров можно оценить по средней шероховатости тонкого среза композиций. Для микроскопических исследований на криомикротоме пригодны ультратонкие срезы толщиной около 100 нм. Так как калибровочные константы чаще всего неизвестны, для оценки используют только относительный фактор шероховатости к, где / - количество выступов на 1 см поверхности к - средняя высота выступов, мкм. [c.582]


Смотреть страницы где упоминается термин Срезы полимеров: [c.175]    [c.219]    [c.127]    [c.35]    [c.80]    [c.50]    [c.86]    [c.343]    [c.314]   
Инфракрасная спектроскопия полимеров (1976) -- [ c.63 ]




ПОИСК







© 2024 chem21.info Реклама на сайте