Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензол образование с окисью этилена

    При высоких Т этилен почти нацело разлагается на ацетилен и водород, но ниже ок. 1000°, наоборот, его можно получать синтетически из ацетилена (ускоряя реакцию соответствующими катализаторами). Что же касается до расщепления этилена с образованием метана, то оно возможно при любых Т. Образованию углерода при этом разложении надо приписать сильно коптящее пламя как этилена, так и бензола (см. выше). [c.270]


    Для этого процесса применимы также катализаторы процесса дегидрирования этилбензола в стирол. Так, например, при применении для дегидрирования изопропилбензола цинкового стирольного катализатора наблюдается довольно большая активность и селективность в ходе образования а-метилстирола. В качестве побочных продуктов образуются небольшие количества бензола, толуола, этилбензола и стирола, а в качестве газообразных—метан, этилен, пропилен, двуокись и окись углерода (две последние за счет реакции водяного газа с попутно образующимся углеродом). Побочные продукты образуются в результате термического разложения изопропилбензола и продуктов реакции, а также в [c.248]

    Наряду со стиролом и водородом при дегидрировании этилбензола образуются такие побочные продукты, как метан, окись и двуокись углерода, этилен, бензол, толуол, ксилолы, изопропил-бензал, а- и р-метилстиролы, дибензил, стильбен, антрацен, флуо-рен и др. Бензол и толуол, как было доказано с помощью меченых -атомов [14], возникают непосредственно из этилбензола, а также и из стирола. Они представляют собой главные побочные продукты, в основном определяющие селективность процесса. Высказывалось немало предположений о том, что реакция образования бензола и толуола является обратимой и что добавки этих углеводородов могут увеличить выход целевого продукта. Однако на практике это приводило лищь к уменьщению производительности и отравлению катализатора сопутствующими примесями. [c.735]

    При низких темп-рах (ок. 0°С) И. образует с солями одновалентной меди (напр., u l) комплексные соединения, разлагающиеся при повышенных темп-рах. При 400—500°С И. частично полимеризуется с образованием смеси терпеновых соединений, при 600—700°С он разлагается на этилен, пропилен и бутадиен, при 750°С образуются легколетучие компоненты напр.. На, СН4) и продукт, аналогичный каменноугольной смоле, в к-ром обнаружены бензол, толуол, нафталин, антрацен, 1,2-бензфенантрен. [c.406]

    П. характеризуется достаточно высокой термостойкостью в расплавленном состоянии (до 280—290°С). Выше 300°С начинается значительная деструкция П. с преобладающим разрывом эфирных связей и образованием карбоксильных и винилэфирных групп. Термич. деструкция сопровождается выделением газообразных продуктов, соотношение количеств к-рых в интервале 283—306°С почти неизменно ацетальдегид (80%), углекислый газ (9%), окись углерода (8%), этилен (2%), вода, метан, бензол и др. (1%). Энергия активации термич. деструкции 210 кдж/моль (50 ккал/моль). При темп-рах переработки происходит термоокислительная деструкция П.— образование перекисных радикалов и гидроперекисей. На воздухе деструкция П. начинается примерно на 50°С ниже, чем в среде азота энергия активации термоокислительной деструкции ок. кдж/моль (ок. 40 ккал/молъ). Начальная скорость выделения НаО и СОа на воздухе возрастает примерно в 7 раз, а скорость образования ацетальдегида — в 3 раза по сравнению с прогревом П. при тех же темп-рах в инертной среде. П. стабилизируют обычными антиоксидантами, напр, замещенными фенолами, ароматич. аминами, производными фосфорной или фосфористой к-ты. [c.55]


    Механизм термоокислительной деструкции поликарбоната. Для инициирования реакций деструкции поликарбоната на основе дифенилолпропана в отсутствие влаги требуется затрата значительной энергии на разрыв эфирных связей. Поэтому достаточно быстрая термическая деструкция этого полимера происходит при более высоких температурах (400—500°С), чем деструкция полиэтилентерефталата и других полиэфиров. При окислении поликарбоната в указанном температурном интервале обнаруживают [107, 112— 116] в основном те же продукты, что и прн термической деструкцип воду, окись углерода, двуокись углерода, водород, формальдегид, метан, этан, этилен, фенол, крезол, этилфенол, изопропепилфенол, дифенил-карбонат, дифенилолиропан, а также ацетон, бензол, толуол, этилбензол. При термоокислении начальные скорости образования и выход продуктов, как правило, существенно больще, чем при пиролизе. [c.91]


Смотреть страницы где упоминается термин Бензол образование с окисью этилена: [c.233]    [c.55]    [c.409]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.590 ]




ПОИСК





Смотрите так же термины и статьи:

Бензол образование с этиленом

Этилен окись



© 2024 chem21.info Реклама на сайте