Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процесс селективности

    В процессе селективного гидрокрекинга в качестве катализаторов применяют модифицированные цеолиты (морденит, эрионит и др.) со специфическим молекулярно —ситовым действием поры цеолитов доступны только для молекул нормальных парафинов. Де идро — гидрирующие функции в таких катализаторах выполняют те же металлы и соединения, что и в процессах гидроочистки. [c.229]


    Назначение процессов селективной очистки — удаление смо — листых веществ и полициклических ароматических углеводородов из масел с целью повышения их индекса вязкости и снижения коксуемости. [c.236]

    Технология процессов селективной очистки масляных фракций и деасфальтизатов [c.236]

    В качестве растворителей на ранних этапах развития процессов селективной очистки масел использовались анилин, нитробензол, жидкий сернистый ангидрид, хлорекс (р, 3 -дихлорэтиловый эфир) идр. Основными промышленными растворителями в настоящее время являются фенол, фурфурол и находящий все большее применение Ы-метилпирролидон (ЫМП), свойства которых были приведены в табл. 6.1. [c.237]

    Процессы селективного гидрокрекинга [c.234]

    В настоящее время производство топлива Т-1 практически прекращено, а ТС-1 по-прежнему остается наиболее массовым топливом для реактивной авиации. Однако в 70-х годах в сырьевой базе, технологии производства и качестве топлива ТС-1 произошли существенные изменения. Наряду с прямогонным применяют компаундированное топливо ТС-1, получаемое смешением прямогонного и гидроочищенных компонентов, а также топливо, очищенное от тиолов (меркаптанов) с помощью процессов селективной демеркаптанизации [12]. [c.12]

    Существенное влияние на качество базовых масел и на технико-экономические показатели процессов селективной очистки [c.237]

    За проход с последующей переработкой изомеризата в процессе селективного гидрокрекинга 88-89 80-82 117 [c.84]

    Разделение систем частично растворимых друг в друге веществ на практически чистые компоненты представляет большой интерес для ряда химических, гидролизных и лесохимических производств, а в технологии переработки нефти играет важную роль, при разработке схем регенерации водных растворов избирательных растворителей, например фурфурола или фенола, используемых в процессах селективной очистки масляных дистиллятов. [c.265]

    Задача же разделения систем частично растворимых компонентов встречается часто в производственной практике, папример при регенерации растворителя процесса селективной очистки, смазочных масел и в ряде других случаев. [c.47]

    С развитием процессов селективной очистки масел становится несомненным присутствие в маслах природных ингибиторов и важность роли, которую они играют в стабилизации масел рафинаты обладают меньшей антиокислительной стабильностью, чем неочищенные масла. Точного тождества природных ингибиторов с каким-либо классом соединений не установлено, однако в основном их можно классифицировать как фенольные и сернистые соединения. [c.87]

    Схемы концентрирования ацетилена низкотемпературными абсорбентами (аммиак и метанол) были показаны на рпс. 5 и б (стр. 16 и 18). В этих схемах пpи. e-няется несколько растворителей, что усложняет процесс концентрирования и соответственно условия безопасного ведения процесса. В обеих схемах должны предусматриваться такие же общие условия безопасного ведения процесса, как и в процессе селективной абсорбции, а именно регулирование давления и уровня в аппара- [c.105]


    Выделяющиеся при высоких температурах в верхней части колонны высокомолекулярные соединения (смолы) и полициклические ароматические углеводороды извлекают из про-панового раствора низкомолекулярные смолы благодаря действию дисперсионных сил. Таким образом, наряду с процессом фракционирования пропаном здесь наблюдается процесс селективной экстракции смолами и полициклическими ароматическими углеводородами. [c.40]

    Расчет потерь эксергии в процессе селективного проницания газов через мембрану сводится к интегрированию диссипативной функции по всему объему мембраны, которое можно представить в форме последовательного интегрирования по толщине (вдоль координаты г) и площади поверхности мембраны А  [c.241]

    Выполненный выше термодинамический анализ процесса селективного проницания касался несопряженного массопереноса через мембрану при разделении смеси идеальных газон и ограничен локальными характеристиками. [c.248]

    С ростом давления Р энергетическое совершенство процессов в модуле быстро падает, причем определяющее влияние оказывает рост потерь эксергии в процессе селективного проницания через мембрану. Общий вид зависимости т]мд = 11(Рг) определяется видом функции Ппр = т](Р) ), так как сумма относитель- [c.261]

    Как и в процессе деасфальтизации, для улучшения четкости разделения процесс селективной очистки масел целесообразно вести при высоком температурном градиенте. На установках фур — фурольной очистки масел градиент экстракции поддерживают на уровне 30 — 40 °С, а на фенольной — всего 10 — 20 °С. [c.242]

    Анализ энергетического совершенства основной стадии мембранного процесса — селективного проницания — выполнен в разд. 7.2.2, где исследовано влияние свойств мембраны и параметров газовой смеси на локальные характеристики процесса. [c.262]

    Одной из главных задач, которые предстоит решать в ближайшем будущем, является раскрытие механизма процессов селективной проницаемости мембран и создание количественной теории мембранных процессов. Это, Б свою очередь, в значительной мере поможет при разработке основных положений теории направленного получения мембран с заранее заданными свойствами, а также позволит проводить технологический расчет и проектирование мембранных аппаратов и установок без постановки предварительных экспериментов. В этой связи большое значение приобретают исследования по выявлению влияния внешних факторов (давления, температуры и др.) на селективность и проницаемость мембран, поскольку они не только отвечают на вопрос, для каких целей и в каких интервалах переменных может быть наиболее рационально использован данный метод, но и помогают глубже познавать сущность мембранных процессов. [c.169]

    При исследовании процессов селективной проницаемости мембран обычно стремятся создать в аппарате такие гидродинамические усло- [c.173]

    В этой схеме сочетаются устарелые процессы кислотно-щелочной и кислотно-контактной очистки с современным процессом селективной очистки масел. Наряду с этим применяются различные присадки, добавляемые к готовому базовому маслу в определенных соотношениях. [c.135]

    Модернизация аппаратуры. Конструкция экстракционного аппарата оказывает большое влияние на показатели процесса селективной очистки, в связи с чем ряд работ советских и зарубежных авторов [46—49] посвящен анализу и выбору наиболее совершенных аппаратов для экстракции нефтяного сырья избирательными растворителями. В качестве критерия эффективности экстракционного аппарата предложено использовать число ступеней контакта (ЧСК) [19], фактор эффективности (Ф) и число теоретических тарелок [46]. Фактор эффективности определяют из соотношения  [c.100]

    На установках фенольной очистки как дистиллятного, так и остаточного сырья, наиболее перспективно применение центробежных экстракторов [53—55], имеющих меньший объем и обеспечивающих больший контакт сырья и фенола. Центробежные экстракторы уже нашли промышленное применение на ряде зарубежных установок (фирма Келлог ). Улучшение технико-экономических показателей процесса селективной очистки может быть до- [c.102]

    V адсорбционной очистки и гидроочистки (или гидрокрекинга). Ос — ь овное количество масел производят с использованием процессов селективной очистки и депарафинизации. [c.130]

    Применительно к процессам селективной очистки масел ноль — зуК Тся коэффициентом распределения К, определяемым из соот — НОБ10НИЯ объемных концентраций извлекаемых компонентов в экстракте ( J и рафинате (С К = [c.211]

    Из анализа вышеприведенных требований к качеству экстра — 1ентов можно констатировать, что практически невозможно реко — иендовать универсальный растворитель для всех видов сырья и для нсех экстракционных процессов. В этой связи приходится довольствоваться узким ассортиментом растворителей для отдельных экстракционных процессов. Так, в процессах деасфальтизации гудро — нов широко применялись и применяются низкомолекулярные ал — каны, такие, как этан, пропан, бутан, пентан и легкий бензин, являющиеся слабыми растворителями, плохо растворяющими смолисто—асфальтеновые соединения нефтяных остатков. В процессах селективной очистки масляных дистиллятов и деасфальтизатов применялись сернистый ангидрид, анилин, нитробензол, хлорекс, фенол, фурфурол, крезол и N — метилпирролидон. В процессах депарафинизации кристаллизацией наибольшее применение нашли ацетон, бензол, толуол, метилэтилкетон, метилизобутилкетон, дихлорэтан, метиленхлорид. [c.212]


    Гидрокрекинг — каталитический процесс переработки не — ф"яных дистиллятов и остатков при умеренных температурах и ПС вышенных давлениях водорода на полифункциональных ката — Л1- заторах, обладающих гидрирующими и кислотными свойствами (а в процессах селективного гидрокрекинга — и ситовым эф — ф ктом). [c.224]

    Как было указано выше, каталитическая гидроочистка - наиболее эффективный способ удаления из нефтепродуктов сернистых соединений всех типов. Однако процесс гидроочистки требует высоких капитальных и эксплуатационных затрат, и мощности по гидроочистке на НПЗ не всегда обеспечивают очистку всех вырабатываемых на заводах топлив. В ряде случаев выгодна очистка топлив простыми по технологическому оформлению и дешевыми процессами селективной демеркаптанизации. Нельзя оставить без внимания и тот факт, что зарубежными стандартами предусматривается более высокое (до 0,3-0,4 %), чем у нас (до 0,2 %) содержание в реактивных топливах общей серы и допускается возможность введения в топливо антиокислителей и деактнваторов металлов. Установлено, что дизельные топлива, содержащие 0,2-0,3 % общей серы, при отсутствии в них меркаптанов, сероводорода и свободной серы в десятки раз стабильнее полностью обессеренных топлив [1]. [c.19]

    Селективность каталитического действия в процессах селективного гидрокрекинга (СГК) достигается применением специаль — них катализаторов на основе модифицированных высококремне— земных цеолитов, обладающих молекулярно— ситовым свойством. Катализаторы СГК имеют трубчатую пористую структуру с разме — рсМи входных окон 0,5 — 0,55 нм, доступными для проникновения и рс агирования там только молекулам парафинов нормального с тро — ег ИЯ. Для гидрирования образующихся продуктов крекинга в цеолит ВЕодят обычные гидрирующие компоненты (металлы У1П и VI групп). [c.234]

    Избыток СО2 в кислом газе (более 30%) дестабилизирует его горение, процесс окисления H2S воздухом становится неустойчивым. При высоких температурах (выше 300—400 °С) СО2 диссоциирует на кислород и оксид углерода, который далее может реагировать с элементарной серой с образованием OS, S и S2. При высоком содержании СО2 в природ1Юм газе рекомендуются процессы селективной очистки. [c.186]

    В табл. 6.12 приведены характеристики образцов бензинов, приготовленных из риформата и рафинатов после процесса селективного гидрокрекинга и после переработки смесей. Приведенные данные указывают на возможность получения неэтилированного бензина АИ-93 на основе продуктов процесса селектогидрокрекинга без вовлечения в его состав дорогостоящих алкилатов. [c.175]

    С ростом давления при всех значениях 0 мольная доля легкопроникающего компонента непосредственно у мембраны падает, резко снижая движущую силу процесса селективного проницания этого компонента. В работе [43] исследовано, как влияет коэффициент взаимной диффузии D12 в газовой фазе на отношение хц1хщ. оно изменяется в меньших пределах для смеси с большим значением Di2(H2—СО2). [c.155]

    Подставив выражения для химического сродства Аг, скорости реакции Vrr и перекрестного коэффициента г в уравнение диссипативной функции (7.77) и интегрируя ifo по объему мембраны (см. 7.45), можно получить уравнение для расчета и анализа потерь эксергии в процессе селективного проницания через реакционно-диффузионную мембрану. Необходимое значение степени сопряжения массопереноса и химического превращения находят по уравнению (1.18) на основе опытных значений коэффициента ускорения Фь Предполагается также, что известно распределение концентраций всех компонентов разделяемой газовой смеои и веществ матрицы мембраны, участвующих в реакциях, как решение системы нелинейных дифференциальных уравнений (1.26). Энергетическая эффективность процесса при 7 = Гер оценивает эксергетический к. п.д., вычисляемый по уравнению (7.71). [c.255]

    По мере истощения смеси исходного состава Х >х и развития диффузионного пограничного слоя по длине мембранного элемента происходит уменьшение доли легкопроникающего компонента и приближение локальных к. п.д. проницания к максимальному значению. При xf<.x заметно смещение функции г]пр = т](д ш) влево от точки максимума (см. рис. 7. ), т. е. ухудшение термодинамического совершенства процесса селективного проницания. [c.262]

    Сравнивая интегральные и локальные эксергетические характеристики процесса селективного проницания, показанные соответственно на рис. 7.6, 7.9 и 7.14, можно заметить, что положения максимумов функции т]пр = т1(л /) и т]пр = п(д с,) примерно совпадают, однако функция Ппр = Г1(л ) при убывает быстрее, а при медленнее, чем т]пр = г (Хш) для локального процесса проницания. Это вызвано смещением усредненного состава (х ) газовой смеси в напорном канале в сторону максимума к. п. д. при Xf Xf и, напротив, удалением величины Хш в область низких значений Т1пр при Xf [c.263]

    Если учесть возможность сокращения потерь эксерпии в процессе селективного проницания выбором оптимального отноше- [c.267]

    Учитывая сказанное выше и основываясь на современных представлениях о связанной жидкости, развитых в работах Б. В. Дерягина, Н. В. Чураева и сотр. i[171—173, 223—227], процесс селективной проницаемости мембран по отношению к водным растворам электролитов можно рассматривать следующим образом. [c.203]

    Значительную часть авиационных бензинов также получают на базе катализатов риформинга. Кроме того, в товарную композицию, соответствующую бензину Б-91/115, входят дефицитные и дорогостоящие компоненты до 35% алкилата и до 13% ароматических углеводородов. Чтобы снизить себестоимость производства авиабензинов, необходимо разработать новые способы получения высокооктановых компонентов с пониженным содержанием ароматических углеводородов. В связи с этим была разработана технология получения бензина Б-91/115 на базе головной фракции катализата жесткого риформинга [121-124, 149-151]. По этой технологии из риформинга выделяют фракцию, выкипающую до 150 С, и подвергают ее гидрированию и гидроизомерезации с целью превращения избыточного количества ароматических углеводородов в нафтеновые. Затем для повышения сортности проводят процесс селективного гидрокрекинга парафиновых углеводородов нормального строения. Однако для реализации этой технологии требуется наличие свободной установки типа Л 35-5 [123 . [c.27]

    По мере увеличения требований к качеству автотракторных масел осуществляется впервые в Советском Союзе на бакинских заводах процесс селективной очистки дистиллятных масел фурфуролом. Указанный процесс был предварительно отработан на пилотной установке одного из заводов г. Баку, по показателям которой была запроектирована и сооружена в 1934—1 35 гг. крупная промышленная инсталяция, исключительно на базе отечественной техники. [c.134]

    Большое значение с точки зрения качественных и технико-экономических показателей цроцеаса оелектив ной очистки имеет фракционный состав сырья. С повышением пределов выкипания фракций одной и той же нефти растет число колец в молекулах циклических углеводородов при одновременном увеличении числа атомов углерода в боковых цепях, что приводит к повышению их критической температуры растворения (КТР) в данном растворителе. Растворение же смолистых веществ и серооргаяических соединений, содержание которых увеличивается с повышением температуры выкипания фракции, происходит при более низкой температуре экстракции. В связи с тем, что КТР компонентов масляного сырья зависит от структурных особенностей их молекул и изменяется с изменением пределов выкипания фракции, одним из важнейших факторов процесса селективной очистки является фракционный состав сырья. При очистке масляных фракций, выкипающих в широком интервале температур, вместе с низкоиндексными компонентами удаляются и приближающиеся к [c.91]

    На большинстве установок селективной очистки процесс экстракции осуществляется в противоточных насадочных колоннах, которые из-за недостаточной степени контактирования фаз не обеспечивают требуемой глубины извлечения низкоиндексных компонентов из очищаемого сырья. Глубина извлечения масляных компонентов при использовании колонн такого типа при одноступенчатой экстракции составляет 85—90% (масс.) от их потенциального содержания в сырье. Для повыщения разделяющей способности и производительности экстракционных колонн на ряде установок вместо насадки используют жалюзийные и перфорированные тарелки, позволяющие повысить производительность по сравнению с насадочными колоннами на 15—20% (масс.) при очистке дистиллятного сырья. Эффективность экстракции в процессе селективной очистки может быть повышена при создании пульсаци-онного режима в насадочных колоннах [48] или замене насадки в верхней части колонны на вращающиеся вибрирующие тарелки [49]. Улучшить контакт между сырьем и растворителем в экстракционных колоннах можно, пропуская противотоком к движению растворителя инертный газ с пульсирующим изменением его расхода [50]. Такой способ экстракции позволяет вследствие увеличения дисперсности и перемешивания движущихся потоков с учетом пульсационного режима повысить степень извлечения из сырья компонентов, ухудшающих эксплуатационные свойства масел. [c.101]

    На заводе фирмы Сан ойл [68] при производстве масел из наиболее высококипящих дистиллятов (470—550 °С) процесс селективной очистки предшествует гидрокрекингу. По этому варианту фирмой вырабатывается ассортимент масел с индексом вязкости до 101. Технология, разработанная фирмой Ройал датч-Шелл груп [69], предусматривает предварительную селективную очистку деасфальтизата, подвергающегося затем гидрокрекингу, что дает возможность получать высокоиндексные остаточные масла. [c.109]


Смотреть страницы где упоминается термин Процесс селективности: [c.70]    [c.74]    [c.264]    [c.112]    [c.112]    [c.82]    [c.277]   
Теория рециркуляции и повышение оптимальности химических процессов (1970) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционные процессы селективные свойства

Влияние оперативных параметров на эффективность процессов очистки масел селективными растворителями

Влияние параметров пиролиза на жесткость и селективность процесса

Влияние температуры на селективность процесса

Влияние типа реакторов и способа введения реагентов на селективность процесса

Влияние транспортирующих процессов на селективность

Вульф-процесса селективными растворителям

Деасфальтизация пропаном. Очистка парными растворителями (дуосол-очистка) Процессы селективной очистки

Епифанова, А. 3. Дорогочинский, А. Ю. Брук. Изучение инициирующего влияния примесей натриевой щелочи, перекиси кумила и натриевой соли гидроперекиси изопропилбензола в изопропилбензоле на скорость и селективность процесса окисления его в гидроперекись

Интенсификация процесса селективной очистки масел фенолом

Интенсификация процессов очистки селективными растворителями

Использование зависимости селективности реакций от степени превращения для выбора оптимальных режимов процессов

КИНЕТИКА И МЕХАНИЗМ КАТАЛИТИЧЕСКИХ ПРОЦЕССОВ Гороховатский, Селективность медного катализатора в реакциях окисления олефинов

Кинетика промышленных процессов гидроочистки. Селективность гидрогенолиза сернистых соединений

Комбинированный процесс деасфальтизации и селективной очистки

Комбинированный процесс каталитического риформинга И СЕЛЕКТИВНОГО ГИДРОКРЕКИНГА

ЛУКЬЯНОВ, М.М.ЕРМИЛОВА, В.С.СМИРНОВ, ГРЯЗНОВ, М.Г.СЛИНЬКО. Моделирование процесса селективной гидрогенизации циклопентадиена в реакторе с мембранным катализатором

Математический анализ процесса обезвоживания растворов в кипящем слое с селективной выгрузкой

Мембранные процессы селективность

Непрерывный процесс селективной очистки (экстракции) в лабораторных условиях

ОПТИМИЗАЦИЯ ХРОМАТОГРАФИЧЕСКОГО ПРОЦЕССА И СЕЛЕКТИВНОСТЬ ХРОМАТОГРАФИЧЕСКОЙ СИСТЕМЫ

ОФОРМЛЕНИЕ ПРОЦЕССОВ РАЗДЕЛЕНИЯ УГЛЕВОДОРОДОВ С ИСПОЛЬЗОВАНИЕМ СЕЛЕКТИВНЫХ РАСТВОРИТЕЛЕЙ

Оптимальная селективность процесса

Основные факторы, влияющие на эффективность процессов очистки селективными растворителями

ПОДБОР НОВЫХ РАСТВОРИТЕЛЕЙ ДЛЯ ПРОВЕДЕНИЯ ПРОЦЕССОВ ЭКСТРАКЦИИ Грищенко, В. Н. Покорений, М. Н. Яблочкина. Новые селективные растворители для экстракции ароматических углеводородов

Периодический процесс селективной очистки (экстракции) в лабораторных условиях

Повышение селективности процесса окисления циклогексаиа

Применение нескольких (парных) растворителей. Комбинированный процесс деасфальтизации и селективной очистки

Процесс очистки смазочных масел избирательными (селективными) растворителями

Процессы селективного гидрокрекинга

Процессы селективные

Процессы, объединяющие платформинг и селективный крекинг

Реактор селективность процессов

Регулирование селективности процесса

Селективная двумерная обменная ЯМР-спектроскопия и ее применение к изучению молекулярных динамических процессов

Селективность гетерогеннокаталитического окисления углеводородов и типичные промышленные процессы

Селективность избирательность процесс

Селективность ионообменного процесса

Селективность катализаторов поликонденсационных процессов

Селективность мембран и мембранных процессо

Селективность органических ионитов как суммарный эффект процессов сольватации и гидратации

Селективность процесса Синильная кислота

Селективность процесса влияние соотношения реагенто

Селективность процесса влияние фазового состояни

Селективность процесса гидрогенизации

Селективность процессов в различных реакторах

Селективность процессов гидратации олефинов

Селективность процессов гидрирования

Селективность процессов гидролиза хлорпроизводных

Селективность процессов гидроформилирования

Селективность процессов глубокого окисления

Селективность процессов дегидрирования

Селективность процессов мягкого окисления

Селективность процессов окисления этилена

Селективность процессов хлоргидринирования

Селективность процессов хлорирования

Селективность процессов эпоксидирования

Селективность сложных реакций и отравление катализатора при диффузионном торможении процесса

Селективные процессы восстановления

Селективные процессы гидрогенизации

Селективные процессы крекинга

Селективные процессы полимеризации

Семенов С. Г., Лебедев В. В., Трегер Ю. А. Использование реакционно-ректификационных систем для повышения селективности процессов жидкофазного, заместительного хлорирования

Смирнов В. В. Селективность низкотемпературных процессов синтеза хлоруглеводородов

Совмещенный процесс деасфальтизации и селективной очистки масел

Сопоставление процессов разделения с использованием селективных растворителей

Степень конверсии сырья, выход целевого продукта и селективность процесса

Сущность процесса селективной очистки

Теория процесса адсорбции. Скорость адсорбции. Статическая и динамическая активность адсорбентов. Селективные свойства адсорбентов Область применения адсорбционных методов разделения газовых смеДесорбция адсорбентов. Схемы и аппаратура адсорбционных процессов. Расчет адсорбционной аппаратуры. Гиперсорбция Глава четырнадцатая. Экстрагирование

Технология процессов селективной очистки масляных фракций и деасфальтизатов

Увеличение селективности процесса

Физико-химические предпосылки селективной коррозии в s А в S в I S S. б Коррозионные процессы на сплавах

Химико-технологический процесс селективность



© 2025 chem21.info Реклама на сайте