Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерный магнитный резонанс, спектры влияние неспаренных электроно

    Спектры ядерного магнитного резонанса (ЯМР). Выводы, полученные при помощи спектров ЭПР, хорошо согласуются с фактами, которые наблюдались при изучении спектров ядерного магнитного резонанса комплексных соединений. Было обнаружено, что если у центрального атома имеется неспаренный электрон, то это существенно влияет на характер спектра ЯМР лигандов. Это влияние можно объяснить лишь тем, что спиновая плотность неспаренного электрона частично перемещается с орбиталей металла на орбитали атомов лиганда. Так, резонансная частота протонов (Н ) кольца в трис(ацетилацетонато)ванадии(П1) (рис. 26.23) значительно сдвинута по сравнению с аналогичным диамагнитным комплексом, например с алюминиевым аналогом. Чтобы объяснить величину этого сдвига, необходимо предположить, что спиновая плотность неспаренного электрона, локализованная на -орбитали металла, если пользоваться формальными представлениями ТКП, в действительности заметно перемещается на л-электронную систему лигандов, а следовательно, и на 18-орбитали атомов водорода. Пожалуй, наи- [c.87]


    Первый член описывает расщепление в нулевом поле, следующие два члена—влияние магнитного поля на спиновую мультиплетность, остающуюся после расщепления в нулевом поле члены с Ац и являются мерой сверхтонкого расщепления параллельно и перпендикулярно главной оси, а Q —мерой небольших изменений в спектре, вызванных ядерным квадрупольным взаимодействием. Все эти эффекты обсуждались в гл. 9. Последний член учитывает тот факт, что ядерный магнитный момент может непосредственно взаимодействовать с внешним полем Яд = Нц /, где у — гиромагнитное отношение ядра, а Р — ядерный магнетон Бора. Он описывает ядерный эффект Зеемана, который вызывает переходы в ЯМР. Зеемановское ядерное взаимодействие может влиять на спектр парамагнитного резонанса только в том случае, когда неспаренные электроны взаимодействуют с ядром в ядерном сверхтонком или квадрупольном взаимодействиях. Если даже такое взаимодействие и реализуется, то его величина пренебрежимо мала по сравнению с величинами других эффектов. [c.219]

    Наряду с описанным выше механизмом взаимодействия между электронным и ядерным спинами спектры ЯМР позволяют изучать второй тип взаимного влияния, называемый псевдокон-тактным взаимодействием, которое приводит к сдвигу линий спектра. Этот механизм эффективен в тех случаях, когда парамагнитный центр анизотропен. Такими анизотропными свойствами обладают, например, неспаренные электроны на валентных орбиталях атомов редкоземельных элементов. В протонном резонансе это свойство проявляется в дипольном взаимодействии магнитных моментов через пространство. Величина этого взаимодействия пропорциональна выражению (Зсоз 6 — 1) /г , где г — расстояние между рассматриваемым ядром и центром парамагнетизма, а 0 — угол между эффективной осью симметрии парамагнитного момента и ра- " х диус-вектором для данного ядра. [c.355]

    В качестве простого примера сверхтонкого расщепления рассмотрим свободный радикал с двумя протонами, в различной степени влияющими на электронные уровни энергии в магнитном поле. На рис. 16.9 показано влияние двух протонов на возможные уровни энергии электрона. В присутствии магнитного поля неспаренный электрон имеет два уровня энергии с/Пй== + 72 и /Из=— /г- Два протона расщепляют эти уровни так, что в результате неспаренный электрон имеет восемь уровней энергии. В электронном парамагнитном резонансе происходит переворачивание электронного спина, однако направление ядреных спинов не изменяется. Таким образом, в ЭПР электрон, поглощая энергию, переходит с энергетического состояния в нижней группе гпе= 42) на соответствующий уровень в верхней группе (тз= + 7г)- При увеличении напряженности магнитного поля последовательно выполняются условия резонанса для четырех переходов. Соответственно наблюдаются четыре линии в ЭПР-спектре. Поскольку четыре ядерно-спиновых состояния (а а2, Рг, 1З1С12 и Р1Р2) равновероятны, эти четыре линии имеют одинаковую интенсивность. Сверхтонкие расщепления а и Сг могут быть определены из спектра, как это показано на рисунке. [c.512]


    Первый член описывает расшепление в нулевом поле, следующие два члена — влияние магнитного поля на спиновую мультиплетность, остаюшуюся после расшепления в нулевом поле члены А и являются мерой сверхтонкого расщепления соответственно параллельно и перпендикулярно главной оси, Q — мерой небольших изменений в спектре, обусловленных квадрупольным взаимодействием. Все эти эффекты были обсуждены выше. Последний член учитывает тот факт, что ядерный магнитный момент может взаимодействовать непосредственно с внешним полем livЯo=YPlvЯo /, где V — ядерное гиромагнитное отношение и p v — ядерный магнетон Бора. Это взаимодействие сказывается на парамагнитном резонансе только в том случае, когда неспаренные электроны связаны с ядром ядерным сверхтонким или квадрупольным взаимодействием. Но даже при наличии такого взаимодействия эффект обычно пренебрежимо мал по сравнению с другими членами. [c.376]

    Информация об электронном строении соединения, имеющего неспаренные электроны, содержится в положении линий ЭПР, тонкой, сверхтонкой и супер-сверхтонкой структуре, ширине линий и др. По отличию g -фактора от 2 можно судить об орбитальном вкладе в магнитный момент, о характере спин-орбитального взаимодействия, знаке (и величине) константы Я, расщеплении в кристаллическом поле Л, а по анизотропии г-фактора — о строении окружения парамагнитного центра и прежде всего о его симметрии. Сверхтонкая и супер-сверхтонкая структуры спектров ЭПР представляют труднопереоценимую информацию о химическом строении соединения, о локализации неспаренных электронов, о ковалентности связей, о характере участия лигандов дифференцированно в а- и я-связях [305—307]. Дополнительные данные удается получить при исследовании так называемого двойного электронно-ядерного резонанса [308] и влияния электрического поля на спектры ЭПР [309]. [c.172]


Физические методы в неорганической химии (1967) -- [ c.319 ]




ПОИСК





Смотрите так же термины и статьи:

Неспаренный электрон

Резонанс г ядерный магнитный

Резонанс электронный магнитный ядерный магнитный

Спектр ядерные

Спектры электронные

Электрон магнитный

Электронный резонанс



© 2025 chem21.info Реклама на сайте