Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрон магнитный

    Электронный парамагнитный резонанс представляет собой явление поглощения излучения микроволновой частоты молекулами, ионами или атомами, обладающими электронами с неспаренными спинами. Называют это явление по-разному электронный парамагнитный резонанс (ЭПР) , электронный спиновый резонанс и электронный магнитный резонанс . Все эти три термина эквивалентны и подчеркивают различные аспекты одного и того же явления. ЯМР и ЭПР характеризуются общими моментами, и это должно помочь понять суть метода ЭПР. В спектроскопии ЯМР два различных энергетических состояния (если I = 7г) возникают из-за различного расположения магнитных моментов относительно приложенного поля, а переходы между ними происходят в результате поглощения радиочастотного излучения. В ЭПР различные энергетические состояния обусловлены взаимодействием спинового момента неспаренного электрона (характеризуемого т = /2 для свободного электрона) с магнитным полем — так называемый электронный эффект Зеемана. Зеемановский гамильтониан, описывающий взаимодействие электрона с магнитным полем, дается выражением [c.5]


    Ядерный магнитный резонанс (ЯМР). Много общего с ЭПР имеет явление резонансного поглощения электромагнитной энергии, обусловленное переориентацией магнитных моментов ядер, — ядерный магнитный резонанс. Явление это наблюдается на ядрах далеко не всех атомов. Ядра с четными числами протонов и нейтронов имеют спин / = О и, следовательно, не магнитны. Обычно ЯМР исследуют на ядрах Н , Р и спин которых / = /г. Магнитное квантовое число спина гП] в этом случае принимает два значения пц = Ч- /а и пц = —1/а. Этому отвечают в статическом магнитном поле две ориентации магнитного момента ядра— в направлении поля (т/ = = 1/2) и в противоположном (т/ — — /2), различающиеся по энергии на величину АЕ. При наложении слабого радиочастотного поля, перпендикулярного статическому, происходит резонансное поглощение, приводящее к переориентации спинов при частоте, определяемой условием резонанса V = АЕ/к. Обычно в поле порядка 10 ООО Э ([10 /4я]А/м) ЯМР наблюдается на частоте ч =42,57 мГц. Частота резонанса для ЯМР во столько же раз меньше частоты ЭПР (при одном и том же Н), во сколько раз масса ядра больше массы электрона. (Соответственно ядерный магнитный момент меньше электронного магнитного момента.) [c.149]

    В качестве параметра, определяющего положение линии резонансного поглощения в спектре ЭПР, можно рассматривать так называемый спектроскопический фактор расщепления Ланде или ё -фактор, равный отношению электронного магнитного момента к полному угловому моменту. В теоретической спектроскопии для свободных атомов (в газовой фазе) получено следующее выражение этого фактора  [c.57]

    Кобальт в двухвалентном состоянии o +( ) также образует два типа комплексов, различающихся по магнитным свойствам. В низкоспиновом комплексе Со(Ы02)б один неспаренный электрон, а в высокоспиновом Со (НаО) " три неспаренных электрона. Магнитные свойства ионов комплексообразователей, имеющих на -подуровне по 8 и 9 электронов, не зависят от силы поля лигандов. Таковы ионы [c.245]

    Реакционная способность функциональных групп молекул с сопряженными связями не зависит от длины цепи сопряжения. Это явление, называемое винилогией, также очень характерно для систем сопряженных связей. Очень существенно то, что перекрывание р-орбиталей приводит к делокализации я-электронов остов молекулы с сопряженными связями становится для них волноводом, по которому они сравнительно свободно перемещаются, совершая непрерывное волновое движение. Магнитные измерения указывают, что действительно по бензольному кольцу, как в контуре сверхпроводника, циркулирует ток, создаваемый этим дви жением я-электронов. Магнитная восприимчивость в 2,5 раза ниже в плоскости кольца, чем в перпендикулярном направлении. Подобная анизотропия еще заметнее в конденсированных ароматических углеводородах, в которых система сопряженных связей образуется из большого количества бензольных колец, а также в некоторых других конденсированных системах, в частности таких, как фтало-цианины. Но особенно резко она проявляется в графите, что не [c.86]


    Если атом или молекула имеет один неспаренный электрон, магнитный момент частицы равен магнитному моменту электрона 1= /Т. Измерение парамагнитной восприимчивости позволяет обнаружить свободные радикалы, установить число неспаренных электронов в частице и т. п. Особенно большое значение для подобных исследований приобрел метод спектроскопии электронного парамагнитного резонанса (ЭПР). [c.43]

    Магнитный момент у атомов или молекул может быть результатом возникновения круговых токов в электронной оболочке или наличием неспаренных электронных спинов. Как известно, вещества, обладающие магнитными моментами такого рода, называют парамагнитными. В молекулах многих веществ, в том числе и большинства полимеров, электронный магнитный момент скомпенсирован. Подобные вещества относят к категории диамагнитных. Однако некоторые атомные ядра, например водорода и фтора, обладают собственными магнитными моментами, обусловленными их спинами. Поэтому в диамагнитных веществах энергия электромагнитного поля может поглощаться только ядерными магнитными моментами. Последние на три порядка меньще магнитных моментов электронов, поэтому резонансные частоты при магнитном резонансе на электронах значительно выше, чем резонансные частоты на ядрах, что определяет различие радиотехнических схем регистрации в обоих методах. [c.267]

    Измерение ядерного магнитного резонанса (ЯМР) — метод анализа, основанный на резонансном поглощении электромагнитных волн веществом, помещенным в постоянное магнитное поле. Ядерный магнитный резонанс использует явление ядерного магнетизма. Атомные ядра многих химических элементов имеют определенный момент количества движения, т. е. вращаются вокруг собственной оси (спин ядра). Спин ядра аналогичен спину электрона. Магнитный момент возникает потому, что каждое ядро имеет электрический заряд. Для наблюдения ЯМР ампулу, содержащую анализируемое вещество, помещают в катушку радиочастотного генератора. Образец может быть жидким, твердым или газообразным. Катушку с ампулой помещают в зазоре магнита перпендикулярно направлению магнитного поля Ни- Генератор создает на катушке слабое переменное магнитное поле Нх- Резонанс наступает при условии ф=фо= У о, где ф — скорость вращающегося поля Нх, фо — скорость прецессии ядер в поле На, 7 — гиромагнитное отношение у = т1Р (т — магнитный момент ядра атома, Р — момент количества движения ядра). При выполнении условия приемник регистрирует небольшое изменение напряжения на рабочем контуре в виде сигнала в форме гауссовой кривой. Кривая характеризуется высотой сигнала и шириной кривой (полосы), [c.452]

    ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА — условное название многих количественных методов анализа, основанных на измерении различных физических свойств соединений или простых веществ с использованием соответствующих приборов. Измеряют плотность, поверхностное натяжение, вязкость, поглощение лучистой энергии, помутнение, поляризацию света, показатель преломления, ядерный и электронно-магнитный резонансы, потенциалы разложения, диэлектрическую постоянную, температуру фазовых превращений и др. Более правильное название — инструментальные методы анализа. [c.262]

    Магнитные свойства веществ определяются магнитными свойствами ионов, атомов и молекул. В свою очередь, магнитные свойства атомов зависят от собственных магнитных моментов ядерных нуклонов и электронов. Магнитные моменты протонов и нейтронов пример- [c.114]

    В разд. 8.3 было рассмотрено аналогичное поведение электронного магнитного момента во внешнем магнитном поле при наложении радиочастотного поля, проявляющееся при образовании спектров ЭПР. [c.215]

    Введение представления о зоне означает отказ от модели свободных электронов, движущихся в постоянном поле. Однако простая модель свободных электронов очень удобна для рассмотрения многих задач, связанных с движением электронов (электропроводность, рассеяние электронов, магнитные свойства и т. п.). [c.507]

    Квантовое число т определяет дискретные возможные ориентации электронных облаков в пространстве относительно направления внешнего магнитного поля магнитное число т связано с различными дозволенными углами поворота орбиталей в магнитном поле. Формирование у атомов элементов в магнитном поле более тонкой структуры спектра, появление дополнительных спектральных линий связано с квантовыми переходами и изменением энергии электронов. Магнитное число т, как и /, квантуется. [c.62]

    Абсорбционная спектроскопия парамагнитного резонанса является методом, который может быть применен к молекулам, содержащим атомы или ионы с неспаренными электронами. Магнитные моменты здесь примерно в 2000 раз больше ядерных магнитных моментов и поэтому вызывают поглощение энергии в микроволновой области (обычно в области длин волн от 4 до 1 см). Это приводит к изменению ориентации магнитного момента при переходе из одного разрешенного положения в другое. Истинная поглощенная частота зависит от магнитного поля, и, следовательно, путем изменения поля поглощение может быть определено по некоторой микроволновой частоте. [c.197]


    Наличие в уравнениях (9.1), (9.3) двух переменных — орбитальных энергий г1(щ) и чисел заполнения И/ — позволяет применить качественную теорию молекулярных орбиталей для решения двух различных типов задач 1) для установления зависимости орбитальных и полных энергий системы от вида геометрических конфигураций образующих ее атомов и выявления геометрии устойчивой структуры 2) для нахождения при заданном геометрическом строении д или симметрии молекулы оптимальной электронной конфигурации, т, е. числа электронов при которых система устойчива или обладает необходимыми физическими параметрами (потенциал ионизации, сродство к электрону, магнитные характеристики и пр.). [c.333]

    Электронный парамагнитный резонанс. Рассмот рим явление магнитного резонанса на электронах. Магнитный мо мент электрона Ше определяется выражением [c.189]

    Правило отбора по спину (А8 = 0), казалось бы, должно быть универсальным, так как не учитывает симметричность рассматриваемой молекулы. Однако запрещенные по спину переходы часто наблюдаются на практике. Это правило отбора также основано на предположении о независимости волновых функций, а точнее, независимости спиновой и пространственной составляющих электронной волновой функции. Воздействие на электрон магнитного поля, возникающего при смешении относительно него (электрона) положительно заряженных ядер, приводит к смешиванию спиновой и орбитальной компонент, т. е. к спин-орбитальному взаимодействию. Таким образом, представление о чисто спиновых состояниях необходимо модифицировать, вводя обмен спинового момента с орбитальным. Например, состояние, формально описываемое как синг-летное, может в действительности иметь некоторые признаки триплетного, тогда как формальный триплет обладает некоторыми характеристиками синглета. Тогда переходы между синглетами и триплетами можно рассматривать как переходы между чисто синглетными и триплетными компонентами смешанных состояний. Поскольку спин-орбитальное взаимодействие связано с движением ядер, его величина резко возрастает с увеличением заряда ядра ( 2" ). Таким образом, в случае тяжелых ядер запрещенные по спину переходы проявляются сильнее. Хорошим примером является резонансное излучение ртути. (Термин резонансное излучение относится к испусканию при переходе с первого возбужденного состояния в основное резонансное поглощение и повторное излучение также могут наблюдаться в этом случае.) Основное состояние ртути — это 5о, а первый возбужденный синглет — Рь Переходы [c.41]

    Расщепление энергетических уровней электрона представляет собой увеличение числа энергетических уровней в результате воздействия на систему с неспаренными электронами магнитного поля. [c.348]

    При наложении на неспаренные электроны магнитного поля число энергетических уровней возрастает от одного Е = Еа) до [c.348]

    Квантование магнитной энергии, продемонстрированное в этом эксперименте, является результатом расщепления электронных состояний, но оно справедливо и для состояний ядерного спина. Это показали своими опытами Раби и сотр., которые изучали поведение молекулярных пучков в приборе, схематически представленном на рис. 1.4. В этих экспериментах использовались только молекулы, для которых полный электронный магнитный момент был равен нулю, поэтому все наблюдаемые магнитные эффекты следовало относить к магнитным свойствам ядер. В этом опыте молекулярный пучок направляется наклонно между полюсными наконечниками магнита А, создающего неоднородное магнитное поле. Как было описано выше в опыте Штерна — Герлаха, в нем пучок расщепляется на два. Только парамагнитные молекулы по траектории а достигают щели, через которую они попадают в однородное поле магнита В. Затем они фокусируются в поле магнита С, неоднородность которого в точности противоположна неоднородности магнита А. Экран 5 служит детектором, с помощью которого можно измерить интенсивность молекулярного пучка, сфокусированного в точке М. Теперь если облучать молекулярный пучок в области между полюсами магнита В радиочастотным полем, то при определенной частоте, зависящей от напряженности поля магнита В, наблюдается резкое уменьшение интенсивности молекулярного пучка в точке М. При этом отношении частота — напряженность Поля выполняется условие резонанса (1.10). Вследствие погло- Дения энергии часть ядерных магнитных моментов изменяет [c.21]

    Парамагнетизм является результатом ориентации постоянных магнитных диполей в образце. Постоянные магнитные диполи обусловлены или спинами неспаренных электронов, или угловыми моментами электронов на атомных или молекулярных орбиталях. Электроны на орбиталях с /= 1, 2, 3. .. имеют угловой момент и поэтому обладают магнитным моментом. Ядра с магнитными моментами также характеризуются парамагнитными свойствами. Однако ядерный парамагнетизм составляет только одну миллионную долю парамагнетизма, обусловленного орбитальными моментами или спинами неспаренных электронов. Магнитные свойства ядер исследуют методом ядерного магнитного резонанса. [c.496]

    Метод ЭПР особенно полезен в химических исследованиях благодаря тому, что электронный магнитный момент взаимодействует с другими магнитными моментами в молекуле, включая протоны и другие ядра, приведенные в табл. 16.1. Наблюдающееся при этом расщепление линий поглощения называется сверхтонким расщеплением, а не спин-спиновым, как в случае ЯМР. [c.512]

    Ядро с ядерным спиновым квантовым числом I 1 также характеризуется электрическим моментом, и неспаренный электрон взаимодействует как с магнитным ядерным, так и с электрическим моментом. Градиент электрического поля на ядре может взаимодействовать с ква-друпольным моментом (такое взаимодействие изучается с помощью спектроскопии ядерного квадрупольного резонанса), и это взаимодействие влияет на энергии электронных спиновых состояний через ядерно-электронное магнитное взаимодействие как возмущение второго порядка. Влияние квадрупольного взаимодействия обычно носит сложный характер, поскольку этому взаимодействию сопутствует значительно большее магнитное СТВ. Ориентация ядерного момента квантуется как по отношению к градиенту электрического поля, так и по отношению к направлению магнитного поля. Если направление магнитного поля и оси кристалла параллельны, квадрупольное взаимодействие приводит только к небольшому смещению всех энергетических уровней на по- [c.45]

    Хотя методы ЯМР и ЭПР основываются, вообще говоря, на одних и тех же принципах изучения резонансных переходов между, зеемановскими уровнями спиновых систем, количественные различия в абсолютных значениях магнитных моментов и их знаках, а также различный характер изучаемых объектов и решаемых задач обусловливают то, что эти методы развивались практически независимо и имеют существенные отличия в теории и экспериментальном воплощении. В то же время есть ряд аспектов, где явления ядерного и электронного магнитного резонанса тесно переплетаются. Это прежде всего методы множественного резонанса, например двойного электрон-ядерного резонанса (ДЭЯР). Проще рассматривать совместно также химическую поляризацию ядер и электронов и т. д. [c.7]

    Каждый электрон в структуре вещества можно рассматривать в качестве элементарного магнита. Магнитный момент электрона возникает как следствие его вращения вокруг своей оси, а также вокруг ядра атома. Первую составляющую определяют как спиновый магнитный момент она связана со спиновым квантовым числом электрона. Вторую составляющую называют орбитальным магнитным моментом. Ее величина зависит от орбитального и магнитного квантовых чисел данного электрона. Магнитные моменты многоэлектронных атомов, молекул или ионов представляют собой векторную сумму магнитных моментов всех входящих в их состав электронов. Для оценки магнитных свойств вещества несбходимо просуммировать магнитные моменты всех образующих его атомов, молекул или ионов с внесением поправки на их взаимодействия. В газах взаимное влияние молекул незначительно и мало сказывается на магнитных свойствах вещества в целом. В то же время в жидкостях и особенно в твердых телах взаимодействие частиц может привести к существенным изменениям магнитных характеристик системы. [c.300]

    Химические свойства. Железо не образует соединений, в которых его степень окисления соответствовала бы номеру группы, т. е. восьми. Наивысшая степень окисления железа равна + 6, однако в этом состоянии встречается крайне редко, например К2ре04. Степени окисления + 2 и +3 соответствуют ионам Fe " и Fe " , которые на незавершенной Зй(-орбитали содержат соответственно 6 и 5 электронов. Магнитные свойства соединений железа обусловлены наличием меньшего числа электронов на Зй(-подуровне, чем это необходимо для его заполнения. [c.260]

    Хи1Ушческие свойства. Железо образует соединение, в котором его степень окисления соответствует номеру группы. Наивысшая степень окисления желез д равна 4-8. В этом состоянии он получен недавно. Степени окисления +2 и +3 соответствуют ионам Fe и Fe " , которые иа незавершенной 3 /-орбитали содержат соответственно 6 и 5 электронов. Магнитные свойства соединений железа обусловлены наличи- [c.286]

    Структура N1—А возникает в результате возбуждения двух й- и одного 5-электронов на р-орбитали. Соответственно у N1—В на р-орбитали возбуждены один -электрон и один х-электрон. Магнитный момент насыщения, равный для N1 0,6 A м , определяет статистические веса, с которыми структуры N1—А и N1—В представлены в кристалле 30% N1—А и 70% N4—В. На каждые сто атомов никеля 30 атомов N1—А дают 60 электронов с неспаренным спином, 70 атомов N1—В не имеют ни одного электрона с неспа-ренньш спином. В сумме иа сто атомов никеля имеются 60 электронов с неспаренным спином, что дает 0,6 электрона на атом и определяет магнитный момент, равный 0,6 А м . [c.150]

    Молекула имеет несиаренные электроны (магнитные свойства), поэтому вместо вводим две неполностью заполненные орбитали ( , жвивалентные од- [c.80]

    Книга Г. Кёнига и В. Блекуэлла Теория электромеханических систем [86] посвящена объединению в целях теоретического анализа и синтеза весьма различных по своим свойствам и назначению элементов (электрические машины, электронные, магнитные и другие усилители, гидропреобразователи, гироскопы) , которое авторы основьшают не на применении известного метода аналогий, а на использовании одной из ветвей топологии - теории графов . Речь идет о стремлении выявить глубокую общность в математическом описании элементов различной физической природы , чтобы обеспечить применение строгих методов и их обоснованное упрощение. [c.10]

    Главное квантовое число характеризует основное расстояние (и энергию) от ядра до электрона. Азимутальное квантовое число определяет угловой момент электрона. Наиболее важно для нас то, что величина I определяет геометрию наиболее вероятной области нахождения электрона. Магнитное квайтовое число объясняет ориентации различных орбиталей относительно друг друга. Спиновое квантовое число описывает спиновую природу (нет точной аналогии с обычным значением спина) электрона. [c.16]

    Другой чрезвычайно эффективный механизм диполь-динольной релаксации - взаимодействие с иеспаренными электронами. Магнитный момент электрона приблизительно в 2000 раз больше, чем у протона, поэтому в присутствии парамагнитных веществ даже межмолекуляриое взаимодействие оказывается сильным. Это приводит к большому сокращению времен релаксации, полностью останавливает кросс-релакса-пию н подавляет гомоядерный ЯЭО. Умышленно добавляя в образец парамагнитные вещества, мы можем подавлять нежелательный ЯЭО и сокращать T (см. гл. 7). В то же время все обычные растворы содержат заметные количества парамагнитного кислорода, который следует удалять перед измерением ЯЭО (см, разд. 5.3). [c.157]


Смотреть страницы где упоминается термин Электрон магнитный: [c.36]    [c.150]    [c.164]    [c.166]    [c.38]    [c.52]    [c.54]    [c.240]    [c.102]    [c.77]    [c.70]    [c.77]    [c.39]    [c.45]    [c.170]   
Теоретическая неорганическая химия Издание 3 (1976) -- [ c.471 , c.472 ]

Теоретическая неорганическая химия (1969) -- [ c.68 ]

Теоретическая неорганическая химия (1971) -- [ c.65 ]

Теоретическая неорганическая химия (1969) -- [ c.68 ]

Теоретическая неорганическая химия (1971) -- [ c.65 ]




ПОИСК





Смотрите так же термины и статьи:

Вращательный момент электрон магнитный

Диффузия электронов в магнитном поле

Дополнительная сверхтонкая структура, обусловленная взаимодействием электронов с магнитными моментами ядер лигандов

Кандидат химических наук А. А. АСКАДСКИЙ ИССЛЕДОВАНИЯ ПО ЭЛЕКТРОННОМУ И ЯДЕРНОМУ МАГНИТНОМУ РЕЗОНАНСУ В ОРГАНИЧЕСКОЙ ХИМИИ

Магнитная анизотропия атомов, атомных групп и связей Кольцевые электронные токи

Магнитные свойства электрона. Спин

Магнитные свойства. Электронно-ядерные эффекты

Магнитный момент и двойные связи электронами

Магнитный момент свободного электрона

Магнитный момент спина электрон

Магнитный момент электрона

Момент дипольный магнитный электрона

Первый раздел. Методы магнитного резонанса ядер и электронов

Применение электронного и ядерного магнитного резонанса

Резонанс электронный магнитный ядерный магнитный

Резонанс электронный парамагнитны ядерный магнитный

Резонанс электронов магнитный

Релаксация температур электронов и ионов плазмы, находящейся в сильном магнитном пола

СПИН, МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ И МАГНИТНЫЙ МОМЕНТ ЭЛЕКТРОНА

Сверхтонкое расщепление, обусловленное взаимодействием электронов с магнитными моментами ядер лиганда

Связь электронной парой и магнитный момент

Сильный магнетизм электронов проводимости. Аномалии термодинамических величин в сильном магнитном поле

Спектроскопия электронного и ядерного (протонного) магнитного резонанса

Спектры электронного магнитного резонанса

Спин электрона 83. Орбитальный и спиновый магнитный момент электрона 84. Опыт Штерна—Герлаха

Спин электрона и магнитные свойства вещества

Суммарный магнитный момент системы и энергия электронного зеемановского резервуара

Теплопроводность, Ультразвука поглощение, Электронные спектры, Электропроводность, Ядерный магнитный

Теплопроводность, Ультразвука поглощение, Электронные спектры, Электропроводность, Ядерный магнитный резонанс

Физические свойства катализаторов Магнитный метод определения структуры и электронной плотности работающих твердых катализаторов (П. Селвуд)

Фокусировка электронных пучков в комбинированных электрических и магнитных полях

Фокусировка электронных пучков при помощи магнитного поля

Электрон движение в магнитном поле

Электрон магнитный момент, орбитальный

Электрон сила действия магнитного поля

Электрон собственный магнитный момент

Электрон, заряд магнитные моменты

Электронная конфигурация по данным исследований магнитных свойств

Электронная структура и магнитные свойства соединений урана

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи магнитный момент

Электронное строение, спектры и магнитные свойства комплексов кобальта(И)

Электронные и магнитные переходы

Электронный магнитный резонанс

Электронный парамагнитный резонанс. Магнитный резонанс электронный парамагнитный

Электроны магнитные свойства

Ядерного магнитного переносу электрона

Ядерный магнитный резонанс и электронный парамагнитный резонанс

Ядерный магнитный резонанс, спектры влияние неспаренных электроно

Ядерный магнитный резонанс, спектры скорости переноса электроно

магнитные свойства электронов квартеты

магнитный анализ парабола установка электронная

магнитный анализ парабола установка электронная теория в химии

радиусы магнитных орбит электронов

содержащие комплексы, магнитный момент и электронное строение



© 2024 chem21.info Реклама на сайте