Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронный парамагнитный резонанс ЭПР спектры

Рис. 7. Спектр электронного парамагнитного резонанса свободного радикала 2,6-ди-трет-бутил-4-метил-феноксила Рис. 7. Спектр электронного парамагнитного резонанса <a href="/info/743">свободного радикала</a> 2,6-ди-<a href="/info/1362799">трет</a>-бутил-4-метил-феноксила

    Широкое применение для идентификации и определения концентрации парамагнитных частиц (в том числе свободных радикалов) находит метод электронного парамагнитного резонанса (ЭПР) [13]. По спектрам ЭПР в газофазных реакциях, а также в электрическом разряде были обнаружены атомы Н, D, N, О, S, F, I, Вг, J и радикалы ОН, SH, SD, СЮ, ВгО, SO, NS, NF2, а также в ряде случаев измерены их концентрации. [c.26]

Рис. 5. Принципиальная схема прибора для изучения спектров электронного парамагнитного резонанса Рис. 5. <a href="/info/1519745">Принципиальная схема прибора</a> для <a href="/info/1711135">изучения спектров</a> <a href="/info/19444">электронного парамагнитного</a> резонанса
    Ядерный магнитный резонанс (ЯМР) и электронный парамагнитный резонанс (ЭПР) — два метода радиоспектроскопии, позволяющие изучать структуру и динамику молекул, радикалов, ионов в конденсированных и газовой фазах вещества. Спектры ЯМР обладают высокой специфичностью и широко применяются для идентификации соединений, в структурно-аналитических целях, а также для изучения быстрых обменных процессов. Спектроскопия ЭПР — метод исследования парамагнитных частиц и центров, кинетики и механизмов процессов, происходящих с их участием. Особенно большой прогресс в развитии методов спектроскопии ЯМР и ЭПР, достигнутый в последние годы, связан с появлением импульсных фурье-спектрометров, двухмерной спектроскопии и техники множественного ядерного, электрон-ядерного и электрон-электрон-ного резонанса. [c.5]

    Электронное состояние металла исследовалось методом электронного парамагнитного резонанса. Спектры снимались как для твердых веществ, так и для их растворов в различных растворителях, что позволило получить более полную информацию об электронном состоянии хелатного узла и влиянии на него замещающих донорных групп. [c.205]

    СПЕКТРЫ ЭЛЕКТРОННОГО ПАРАМАГНИТНОГО РЕЗОНАНСА КОМПЛЕКСОВ ИОНОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ [c.203]

    Методы обнаружения и анализа. Осн. специфич. методы обнаружения и исследования строения Р. с. основаны на использовании спектроскопии электронного парамагнитного резонанса. Спектры ЭПР дают информацию о хим. строении Р. с., степени делокализации неспаренного электрона, о распределении спиновой плотности по разл. атомам частицы. Методом ЭПР можно обнаружить радикалы в концентрации 10 моль/л. [c.156]


    Параметры электронного парамагнитного резонанса спектров отрицательного молекулярного иона кислорода Oj и ион-радикала От [c.129]

    Параметры электронного парамагнитного резонанса спектров радикалов [c.134]

    В данной главе рассматриваются наиболее важные и широка применяемые методы исследования структуры силикатов дифференциальный термический анализ, рентгеноструктурный и рентгенофазовый анализ, электронная микроскопия, инфракрасная спектроскопия, спектры комбинационного рассеяния и электронный парамагнитный резонанс. [c.150]

    В последние годы свободные радикалы стали обнаруживать и изучать методом электронного парамагнитного резонанса. Метод заключается в резонансном поглощении энергии переменного высокочастотного магнитного поля парамагнитным веществом, помещенным в постоянное магнитное поле. На экране осциллографа возникают спектры электронно-парамагнитного резонанса (ЭПР) исследуемого парамагнитного вещества. Все свободные радикалы обладают парамагнитными свойствами, но каждый радикал имеет свой характерный спектр. [c.40]

    Для второго издания курс подвергся ряду изменений и дополнений. Более подробно рассмотрены основы метода электронного парамагнитного резонанса (3>ПР), приведены примеры идентификации свободных радикалов по спектрам ЭПР. В гл. И1 переработан 2, посвященный теории абсолютных скоростей реакций существенные изменения, касающиеся влияния диэлектрической постоянной на скорость реакции, внесены в 11, трактующий вопросы роли среды в элементарном акте химического превращения в 12 рассмотрение кинетического изотопного эффекта дополнено методом определения констант скоростей по изменению изотопного состава в ходе процесса. Изложение вопроса о кинетике химических реакций, состоящих из нескольких элементарных стадий (гл. VI), дополнено описанием нового способа определения числа линейно независимых дифференциальных уравнений, описывающих кинетику процесса. [c.5]

    Методы ДОВ и КД наравне с рентгеноструктурным анализом, методами ядерного магнитного и электронного парамагнитного резонансов, УФ- и ИК-спектрофотометрией стали могущественными орудиями исследования конформационных состояний оптически активных веществ. Признание методов ДОВ и КД объясняется их огромной чувствительностью (для снятия спектра достаточно 10- — 10 г вещества), простотой работы на этих приборах. Опыт показывает, что в настоящее время именно ДОВ и КД являются наилучшими конформационными характеристиками вещества в растворе. [c.32]

    Радциг В. А., Бутягин П. Ю. Спектры электронного парамагнитного резонанса свободных радикалов в продуктах разрушения твердых кислородсодержащих полимеров.— Высокомолекулярные соединения, 1965, т. А7, с. 922, [c.184]

    Как было установлено [1-4], линейные нейтральные молекулы Сп при п > 2 наблюдаются в насыщенных парах над графитовым материалом при 2500 К. Это было показано методами ИК- и УФ-спектроскопии в видимой части спектра, а также при исследовании спектров электронного парамагнитного резонанса. [c.18]

    Прежде всего было установлено, что во время низкотемпературного радиолиза органических веществ (независимо от их молекулярной массы) в них, так же как и в неорганических веществах, происходит стабилизация положительных и отрицательных зарядов (ионов, дырок и электронов). Об этом свидетельствует изменение краски облученных образцов, их термолюминесценция при разогреве, фотолюминесценция при низких температурах, уменьшение окраски и РТЛ под действием света, изменение электрической проводимости, а также результаты анализа спектров электронного парамагнитного резонанса (ЭПР) облученных полимеров и низкомолекулярных органических веществ [9.7]. [c.236]

    Более детальное рассмотрение спектров электронного парамагнитного резонанса позволяют сделать вывод о том, что чем выше способность к графитации, тем ниже относительно оси ординат располагается часть кривой, соответствующая мезофаз-ным превращениям. Последнее связано с температурой размягчения пеков. Чем она меньше, тем ниже располагается рассматриваемый участок кривой. Аналогичные данные, полученные в [2-61], показывают, что рост концентрации ПМЦ связан с увеличением при термообработке содержания фракции, нерастворимой в хинолине (вторичной) Qi -фракции. Отсюда следует, что долгоживущие свободные радикалы концентрируются в более высокомолекулярных частях пека. [c.90]

    Внедрение СиСЬ, так же как и других акцепторных соединений, например брома, приводит к образованию МСС УВ в центральной части волокна, но не на его поверхности. Углеродные волокна, полученные из пековой мезофазы, по данным электронно-микроскопических исследований, образуют плоские слои МСС, которые располагаются радиально вдоль оси волокна. Их электропроводность и модуль Юнга находятся в линейной зависимости от межслоевого расстояния 002 исходного волокна. Чем больше эта величина, тем ниже значения электропроводности и модуля [6-78]. С повышением 002 (унижается и анизотропия д — фактора, измеренного по спектрам электронного парамагнитного резонанса. [c.317]

    Электронный парамагнитный резонанс (ЭПР) монофторида углерода позволяет получить спектр ЭПР со сверхтонкой структурой [6-168]. Поскольку в идеальном (СГ) все связи С—Г находятся в состоянии зр гибридизации и полностью насыщены, появление спектра ЭПР у этого соединения может быть связано с дефектами структуры, например с вакансиями атомов фтора в связях С—Г, либо с промежуточными соединениями, которые имеют неспаренные электроны. [c.391]


    Электронный парамагнитный резонанс и другие методы магнитохимии приобретают в последние годы широкое распространение для изучения молекулярного строения и изменения конфигураций молекул нефтяных систем, определения структуры входящих в них соединений, оценки уровня межмолекулярных взаимодействий. Методом ЭПР-спектросконии установлено [126, 127, 128], что асфальтены являются концентратами парамагнитных молекул — стабильных свободных радикалов и комплексов парамагнитных металлов, Вследствие большой энергии взаимодействия друг с другом и с диамагнитными молекулами парамагнетики нефтей и остатков объединены в ассоциаты. Сверхтонкая структура спектров ЭПР свободных радикалов нефтей и остатков, впервые полученная авторами работ [126, 127], позволила установить новую химическую характеристику этих соединений, представляющую в виде асфальтенов осадок, получаемый вследствие отторжения парафиновыми растворителями при их взаимодействии с парамегнетиками нефтей и нефтепродуктов, В работе [129] установлено, что с увеличением глубины залегания [c.115]

    Исследование фторированного волокна методом электронного парамагнитного резонанса [6-177] показало присутствие в спектре, кроме линий сверхтонкой структуры, синглетной линии в центре спектра с меняющейся интенсивностью в различных партиях углеродного волокна. По-видимому, появление этой линии связано с непрореагировавшим углеродом, содержание которого в различных партиях различно. О неоднородности фторуглерода свидетельствует.и различная интенсивность ЭПР поглощения в отдельных партиях. [c.400]

Рис. 6. Спектр электронного парамагнитного резонанса ион-радикала тетрахлорсемихинона Рис. 6. Спектр электронного парамагнитного резонанса ион-радикала тетрахлорсемихинона
    Необычные изменения происходят при действии ВД+ДС на полициклические ароматические углеводороды, как, например, нафталин, антрацен. При давлениях до 10 ГПа эти вещества приобретают темную окраску, появляются резкие сигналы электронного парамагнитного резонанса, а ПК спектры свидетельствуют о частичном разрушении ароматических колец. [c.223]

    Ко второй группе относятся радиоспектроскопические методы (исследование поглощения радиоволн в веществе, помещенном в магнитное поле), методы электронного парамагнитного резонанса (ЭПР) и ядерного магнитного резонанса (ЯМР), исследующие значительно более длинноволновые участки спектра, линии которых обусловлены энергетическими различиями молекул вещества в магнитном поле. [c.50]

    Сам факт поглощения веществом, помещенным в магнитное поле, электромагнитного излучения с частотой, удовлетворяющей соотношению (10.8), свидетельствует о присутствии в образце соответствующих частиц, а интенсивность поглощения позволяет судить о количестве этих частиц. Эта информация представляет существенный интерес в случае электронного парамагнитного резонанса, так как позволяет регистрировать присутствие в системе парамагнитных частиц, в том числе свободных атомов и свободных радикалов. Однако основная область применения обоих методов связана с измерением более тонких эффектов, проявляющихся в спектрах магнитного резонанса. [c.158]

    РАДИОСПЕКТРОСКОПИЯ — область физики, изучающая электромагнитные спектры веществ в диапазоне радиоволн и микроволн с частотой от нескольких до 3 IQi Гц. Наибольшее значение в химии получили методы магнитной Р. ядерный магнитный резонанс (ЯМР) и электронный парамагнитный резонанс (ЭПР). Оба метода основаны на эффекте Зеемана — расщеплении спектральных линий микрочастиц или их систем на составляющие в магнитном поле. Например, если поместить вещество, в состав которого входит водород, в магнитное поле с напряженностью Я = 10 ООО а, ядра водорода, протоны, приобретают способность поглощать электромагнитные колебания длиной волны около 7 м, т. е. длиной ультракоротких радиоволн (частота 42,6 МГц). Причем эта длина различна для разных водородосодержащих веществ (т. наз. химический сдвиг частоты), что дает возможность делать выводы о строении молекул. Электроны в этом же магнитном поле поглощают микроволны длиной [c.209]

    Исследование на моделях с использованием аценафтиле-на и других ароматических углеводородов методом электронного парамагнитного резонанса (ЭПР) в целях определения механизма химических реакций, протекающих на разных стадиях карбонизации, выполнено в [2-16,17]. Как многократно показано, спектры ЭПР полукоксов состоят из синглетных линий без сверхтонкого разрешения, ширина и интенсивность которых определяются температурой нагрева. Для определения промежуточных свободнорадикальных структур, возникающих в карбонизуемой системе при нагревании, аценафтилен и другие соединения разбавлялись в инертном растворителе м-пентафениле, что уменьшало вероятность рекомбинации промежуточных свободных радикалов и позволяло их обнаружить с помощью ЭПР. Результаты анализа спектров ЭПР показали, что при нагрювании возникают свободные ароматические радикалы, которые или взаимно рекомбинируют с выделением водорода, или в реакциях диспропорционирования преобразуются в ароматические фрагменты, или перестраивают свою структуру. При плоской конфигурации образующихся продуктов и достаточной подвижности системы карбонизация проходит через мезофазное превращение с последующим образованием при соответствующих температурах углерода с хорошо выраженной текстурой. [c.48]

    Обладая неспаренным электроном, свободные радикалы проявляют парамагнитные свойства. Вследствие этого спектры электронного парамагнитного резонанса являются самым мощным физическим методом обнаружения свободных радикалов и исследования их свойств. [c.259]

    Изучение спектров электронного парамагнитного резонанса трифенилметильного радикала в толуоле выявило наличие повышенной спиновой плотности в орто- и параположениях бензольных колец и, соответственно, дефицит спиновой плотности в мета-положении  [c.259]

    Спектры электронного парамагнитного резонанса (ЭПР) и ядерного магнитного резонанса (ЯМР) [c.280]

    Если частицы вещества способны избирательно поглощать (или испускать) электромагнитные колебания, частоты которых лежат за пределами далекой инфракрасной области, то возникает спектр электронного парамагнитного резонанса (ЭПР) или ядерного магнитного резонанса (ЯМР). Спектр ЭПР отвечает переходам между магнитными уровнями неспаренного электрона, а спектр ЯМР — переходам между магнитными уровнями ядер. В обоих случаях разница (расщепление) — [c.54]

    Практически постепенно изменяют напряженность постоян-иого магнит1н0г0 поля, регистрируя (тем или иным способом) изменение энергии наложенного переменного поля, вызванное поглощением части энергии испытуемым образцом. Если в молекуле исследуемого вещества имеются неспаренные электроны, то при определенной величине Н появляется так называемый сигнал. Это и есть резонансное поглощение, которое при дальнейшем повышении напряженности прекращается. На кривой регистрации энергии поля наблюдается один или несколько пиков (см., (например, рис. 56). Такая кривая носит название спектра электронного парамагнитного резонанса (спектр ЭПР). [c.756]

    Отдельная группа исследований ведется Ю. С. Лазуркииым совместно с А. Ф. Усатым и посвящена действию излучений на биополимеры. Здесь основным средством исследовапия является электронный парамагнитный резонанс, спектры которого изучаются непосредственно в процессе облучения препаратов аминокислот, пептидов и белков быстрыми электронами от электростатического генератора [321]. В этих работах исследованы причины явления насыщения концентрации радикалов и показано, что на/сыщение обусловлено уничтожением радикалов под действием излучения. Одновременно изучены закономерности миграции энергии при облучении полипептидов и белков. [c.347]

    На выходящем пз регенератора катализаторе металлы находятся в виде окислов. Это было доказано на примере ванадия. В пор-фирине ванадий находится в четырехвалентной форме (У +). При отложении ванадия из такого соединения на катализатор валентность его не изменяется, что установлено по спектрам электронного парамагнитного резонанса катализаторов крекинга, отравленных ванадием [337]. После обработки загрязненных ванадием катализаторов крекинга воздухом в условиях, обычно применяемых для выжига, четырехвалентный ванадий переходит в другое окисленное состояние, вероятно, в пятивалентное, и не обнаруживается методом электронного парамагнитного резонанса. В связи с тем, что активность отравленного катализатора сильно зависит от вида соединения, в котором металл присутствует на катализаторе [217], для восстановления первоначальной активности и селективности отравленных катализаторов металлы следует либо совсе.м удалять, либо перевести в новые, неактивные соединения. [c.212]

    Продолжением цикла этих работ явилось исследование механизма ассоциации ванадилхелатов на основе метода электронного парамагнитного резонанса [33]. Было обнаружено два различных типа спектров ванадиевых соединений в растворах нефтяных асфальтенов один тип — связанный со структурой асфальтенов, а другой — свободный . Связанный ванадий характеризуется [c.225]

    Мапгитные свойства ядер используются в различных разделах спектроскопии в спектрах электронного парамагнитного резонанса (ЭПР), ядерного квадрупольного резонанса (ЯКР) п т. д. [c.254]

    Бутягин П. Ю., Колбанев И. В,, Радциг В. А. Спектры электронного парамагнитного резонанса свободных радикалов в продуктах разрушения твердых полимеров.— Физика твердого тела, 1963, т. 5, с. 2257—2260. [c.184]

    Во всех случаях образования МСС с АзГв происходит передача электрона от графитовой матрицы к АбГв. Это хорошо видно на спектрах поглош ения электронного парамагнитного резонанса. [c.291]

    МСС с ЗЬГв ступеней выше I возникают при комнатной температуре. Для получения I ступени необходим нагрев до 70 С. Ионы (8Г ) обнаружены в инфракрасном спектре с 8ЬГа, где виден сильный пик при 663 см" , который соответствует 8ЬГё (рис. 6-13), а также по линии электронного парамагнитного резонанса [6-51]. [c.292]

    С увеличением давления фтора в зоне реакции в смеси фторидов повышается содержание (С2Г) [6-155]. При 550 С повышение дисперсности частичек приводит к увеличению в смеси количества (СГ) . Наличие в спектрах электронного парамагнитного резонанса (С2Г)п сигнала с 5г=2,004 свидетельствует о присутствии в нем непрореагировавшего углерода [6-154]. С повышением температуры термообработки этот углерод реагирует с фтором, находящимся вблизи дефектов образующейся фтору глеродной решетки. [c.380]


Смотреть страницы где упоминается термин Электронный парамагнитный резонанс ЭПР спектры: [c.450]    [c.448]    [c.23]    [c.213]   
Биохимия Том 3 (1980) -- [ c.343 , c.348 , c.351 ]




ПОИСК





Смотрите так же термины и статьи:

Парамагнитные ЭПР-спектры

Резонанс парамагнитный

Спектры электронные

Электронный парамагнитный

Электронный парамагнитный резонанс

Электронный резонанс



© 2025 chem21.info Реклама на сайте