Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь металл молекулярных орбит

    Некоторые молекулы, хотя они на первый взгляд являются валентно насыщенными системами, так как их валентные электроны попарно заселяют молекулярные орбитали, отнюдь не лишены способности соединяться химическими связями с другими молекулами, не разрывая при этом своих собственных межатомных связей. Одни из этих молекул для этого должны иметь незанятые валентные орбитали, а другие — неподеленные пары электронов. Таким образом, одни молекулы проявляют способность присоединять другие молекулы до тех пор, пока не будут заняты все их валентные орбитали. Как известно, р -орбиталь бора не занята в молекуле ВРз. Поэтому эта молекула присоединяет молекулу аммиака, атом азота которой имеет на валентной орбитали одну пару неподеленных электронов, причем образуется донорно-акцеп-торная связь, почти ничем не отличающаяся от других ковалентных связей. Следовательно, нет оснований называть подобные соединения молекулярными комплексами — это настоящие атомные, а не молекулярные соединения. Связи подобного типа с донорами электронов могут образовать также молекулы — соединения бериллия, алюминия и др. В молекулах типа ВеРг имеются две незанятые валентные орбитали. Благодаря этому фторид бериллия присоединяет две молекулы диэтилового эфира, кислород которого служит донором электронов. Если в молекулах имеются незанятые валентные орбитали и недостаточное количество электронов для их нормального заселения парами электронов, как, например, в молекулах бороводородов, то эти молекулы в ряде случаев соединяются друг с другом путем делокализации всех валентных электронов между всеми молекулярными орбиталями, в результате чего все они оказываются частично заселенными электронами и между молекулами образуются настоящие химические связи. Это относится не только к взаимодействию молекул диборана с образованием высших боранов, но и к конденсации атомов металлов, в результате которой получаются твердые металлы. Атомы металлов также имеют незаселенные валентные орбитали, которые при конденсации сливаются в валентную зону и таким образом становятся достоянием всех валентных электронов. [c.88]


    Теория поля лигандов рассматривает лиганды не просто как заряженные сферы, а как частицы, имеющие свои собственные орбитали. Согласно представлениям метода делокализованных молекулярных орбита-лей, шесть орбиталей лигандов, которые в первом предположении имеют симметрию а-типа относительно линий связи металл—лиганд, образуют комбинации с шестью из девяти р- и -орбиталей металла, а именно с орбиталями (1 2 5, р Ру и р . Это как раз те же орбитали, которые Полинг использовал для конструирования шести гибридных орбиталей. Составим из них комбинации с шестью атомными орбиталями лигандов при этом мы получим шесть делокализованных связывающих орбиталей и шесть разрыхляющих орбиталей (рис. 20-14). Орбитали и сим- [c.233]

    В образовании связи я-аллильных лигандов с металлом принимают участие молекулярные орбитали, охватывающие три атома углерода. Донорно-акцепторная связь образуется за счет взаимодействия электронов аллильного лиганда с вакантными гибридными 5р-орбиталями металла, в то время как донорно-дативная связь возникает за счет вакантной разрыхляющей молекулярной орбитали аллильной группы и пар электронов, находящихся на уг-орбитали (или комбинации йдг — ру) металла. Перекрывание орбиталей, как правило, невелико и дативная связь в я-аллильных комплексах, хотя и способствует стабилизации, но не определяет ее [61]. В присутствии лигандов типа Р(СбН5)з, галогенов и неко-1 торых других стабильность я-аллильных комплексов возрастает, что объясняется низким энергетическим уровнем разрыхляющих орбиталей этих лигандов, которые принимают участие в образовании дативных связей. Стабильность комплексов я-аллильного типа [c.107]

    Карбонилы металлов. В теории поля лигандов принимается, что неподеленные пары электронов СО участвуют в образовании ковалентных связей, переходя на молекулярные орбитали комплекса. В октаэдрическом карбониле Сг(СО)в двенадцать электронов шести молекул СО переходят на о-связывающие орбитали комплекса (а, . Шесть электронов хрома располагаются на tгg- орбиталях (сильное поле, см. рис. 56). Эти орбитали не участвуют в образовании а-связей. Но они могут образовать -л-связи со свободными разрыхляющими л-орбиталями молекулы СО, каждая из трех г -орби-талей с гс -орбиталями двух молекул СО [c.128]

    С точки зрения теории МО, основной причиной, определяющей низкую стабильность нестабилизированных а-комплексов переходных металлов, является малая разница в энергиях высшей занятой -орбитали металла и разрыхляющей а -молекулярной орбитали, связывающей металл с углеродом. Поэтому при незначительном возбуждении электронов металла они переходят на а -разрыхляю-щую орбиталь и деформируют комплекс. При координации металла и электронодонорного органического лиганда возникают дативные связи, благодаря которым разность энергий d- и а -орбиталей увеличивается, а, следовательно, возрастает прочность комплекса. Такая координация снижает влияние и второй причины дестабилизации — перехода электронов с а-связывающей на вакантную -орбиталь, которая при взаимодействии с электронодонорным лигандом оказывается заполненной. [c.103]


    В металле число атомных орбиталей, участвующих в образовании отдельной молекулярной орбитали, чрезвычайно велико, поскольку каждая атомная орбиталь перекрывается сразу с несколькими другими. Поэтому число возникающих молекулярных орбиталей тоже оказывается очень большим. На рис. 22.20 схематически показано, что происходит при увеличении числа атомных орбиталей, перекрыванием которых создаются молекулярные орбитали. Разность энергий между самой высокой и самой низкой по энергии молекулярными орбиталями не превышает величины, характерной для обычной ковалентной связи, но число молекулярных орбиталей с энергиями, попадающими в этот диапазон, оказывается очень большим. Таким образом, взаимодействие всех валентных орбиталей атомов металла с валентными орбиталями соседних атомов приводит к образованию огромного числа чрезвычайно близко расположенных друг к другу по энергии молекулярных орбиталей, делокализованных по всей кристаллической решетке металла. Различия в энергии между отдельными орбиталями атомов металла настолько незначительны, что для всех практических целей можно считать, будто соответствующие уровни энергии образуют непрерывную зону разрешенных энергетических состояний, как показано на рис. 22.20. Валентные электроны металла неполностью заполняют эту зону. Можно упрощенно представить себе энергетическую зону металла как сосуд, частично наполненный электронами. Такое неполное заселение разрешенных уровней энергии электронами как раз и обусловливает характерные свойства металлов. Электронам, заселяющим орбитали самых верхних заполненных уровней, требуется очень небольшая избыточная энергия, чтобы возбудиться и перейти на орбитали более высоких незанятых уровней. При наличии любого источника возбуждения, как, например, внешнее электрическое поле или приток тепловой энергии, электроны возбуждаются и переходят на прежде незанятые энергетические уровни и таким образом могут свободно перемещаться по всей кристаллической решетке, что и обусловливает высокие электропроводность и теплопроводность металла. [c.361]

    В твердом состоянии металлы обладают плотноупакованной или сходной структурой. Таким образом, каждый атом металла имеет несколько ближайших соседей. Атомные орбитали соседних атомов металла перекрываются, образуя молекулярные орбитали, которые простираются на всю кристаллическую решетку металла. Химическая связь приобретает максимальную прочность у металлов, каждый атом которых располагает шестью валентными 5- и -электронами. Сплавы обладают всеми характерными свойствами металлов, но состоят из двух или нескольких элементов. [c.366]

    Как и следует из общих положений метода молекулярных орбиталей, а изучение природы химической связи в этих соединениях подтвердило такой вывод, прочность связи металла с органическим лигандом тем выше, чем сильнее перекрываются орбитали металла и лиганда, чем ближе энергии этих орбиталей, чем большее число связывающих и меньшее число разрыхляющих молекулярных орбиталей занято электронами. При детальном рассмотрении электронного строения отдельных комплексов показано, что при образовании тг-связи алкена с металлом происходит не только передача тг-электронов на вакантную орбиталь металла. Дополнительно осуществляется перенос электронов с других орбита-лей металла на разрыхляющие орбитали лиганда тг-симметрии. Это объясняет низкую полярность связи металл—лиганд в таких комплексных соединениях и повышает их кинетическую стабильность, [c.599]

    После того как было рассказано о химической связи между неболь-щим числом атомов, объединенных в молекулы, можно перейти к рассмотрению связи в твердых и жидких веществах. Простая, но очень плодотворная теория электрических свойств кристаллов рассматривает весь кристалл как одну большую молекулу, по всему объему которой простираются делокализованные молекулярные орбитали. Она называется зоииой теорией металлов и диэлектриков (изоляторов). [c.601]

    В процессе образования кристалла происходит перекрывание внешних электронных облаков атомов по аналогии с образованием химической связи в молекулах. В соответствии с методом МО при взаимодействии двух атомных электронных орбиталей образуются две молекулярные орбиТали связывающая и разрыхляющая. При одновременном взаимодействии N микрочастиц образуется N молекулярных орбиталей. Величина N в кристаллах может достигать огромных величин (порядка 10 ). Поэтому и число электронных орбиталей в твердом теле чрезвычайно велико. При этом разность между энергиями соседних орбиталей будет ничтожно мала. Так, в кристалле натрия разность энергетических уровней двух соседних орбиталей имеет порядок 10 Дж. Таким образом, в кристалле металла образуется энергетическая зона с почти непрерывным распределением энергии, называемая зоной проводимости. Каждая орбиталь в этой зоне охватывает кристалл по всем его трем измерениям. Заполнение орбиталей зоны проводимости электронами происходит в соответствии с положениями квантовой механики. Так, из условий минимума энергии электроны будут последовательно заполнять все орбитали, начиная с наинизшей, причем на каждой орбитали в соответствии с запретом Паули может располагаться лишь два электрона с антипараллельными спинами. С повышением температуры за счет теплового возбуждения электроны будут последовательно перемещаться на более высокие энергетические уровни, передавая тепловую энергию с одного конца кристалла на другой и обеспечивая таким образом его теплопроводность. [c.82]


    Характеристика распределения зарядов в комплексной частице не исчерпывает вопроса о валентном состоянии центрального иона. В принципе после образования соединения нужно рассматривать не валентные орбитали атома, а возникшие молекулярные орбитали. Однако ряд допустимых приближений иногда позволяет считать, что атомные орбитали иона металла сохраняются при вхождении его в комплексную частицу, но испытывают возмущение под действием лигандов, в связи с чем может измениться порядок их заполнения электронами. В соответствии с этим у иона Ре + (3 ) в комплексной частице все электроны могут быть неспаренными  [c.15]

    Отдельную группу составляют я-доноры, в которых электроны, вступающие в связь, занимают л-орбитали (алкены, алки-ны, ароматические углеводороды и их производные). Акцептором может служить молекула, имеющая вакантные электронные уровни. Им часто является атом металла в галогенидах металлов и некоторых металлорганических соединениях, молекула галогена, ароматическое или ненасыщенное соединение с высоко электроотрицательным заместителем (ароматические полинитросоединения, тетрацианэтилен и др.). Донорно-акцепторная связь приводит к образованию комплексов (молекулярных соединений), которые могут быть слабыми или весьма прочными и которые играют важную роль в органической, металл-органической и физической химии. [c.123]

    Современные представления о координационных соединениях переходных металлов основываются на так называемой теории поля лигандов. Это — квантовомеханическая теория соответствующих молекул, в которой рассматриваются как молекулярные орбитали центрального иона металла, так и его лигандов в координационной сфере. Связи металл — лиганд не характеристичны и лиганды сильно влияют друг на друга в химических реакциях. Координация лигандов определяет симметрию молекулы и расщепление энергетических уровней -электронов. В отсут-216 [c.216]

    Простая связь образована только а-молекулярными орбиталями. Двойная связь состоит из одной о- и одной л-сиязи, тройная — из одной о- и двух ортогональных я-сзя-эей. Четверная связь, кроме орбиталей тройной связи, включает еще орбитали S-связи. Наибольшей прочностью обладают ст-связи, наименьшей — 5-связи. В биядерных комплексах переходных металлов, в к-рых реализована [c.281]

    В табл. 2 [141, 149—152] приведены --факторы, значения D и константы сверхтонкого взаимодействия, наблюдавшиеся для ионов первого переходного периода. Стивенс [153] и Оуэн [154] использовали теорию молекулярных орбит для иона металла и лигандов, чтобы объяснить наличие ковалентной составляющей и сверхтонкой структуры от лигандов ионов переходных элементов. Уравнения, выведенные для -фактора и константы сверхтонкой структуры на основе теории молекулярных орбит, позволяют оценить величину переноса заряда электронами металла на орбиты лигандов. Оуэн применил теорию молекулярных орбит [154] к ионам Сг +, Ni + и Си +, полагая, что л-связи отсутствуют. Маки и Мак-Гарвей [155] использовали этот метод для иона Сц2+ в тетрагональной симметрии, принимая во внимание как 0-, так и л-связи. Полученная ими энергетическая диаграмма уровней иона Сц2+ приведена на рис. 25. [c.80]

    Нет сомнения в том, что эти комплексы редкоземельных металлов содержат связи металл — кольцо с некоторой долей ковалентного характера и не являются простыми ионными цик-лопентадиенидами. Орбитали 6х и 6р редкоземельных металлов имеют подходящие размеры и энергии для образования ковалентных связей металл — лиганд орбитали 4/ и 5с , конечно, расположены слишком далеко от орбиталей 6х и 6р и не вносят заметного вклада в образование связи. Рассмотрение комплексов редкоземельнь1х металлов в рамках теории молекулярных орбиталей проведено в работах [1286, в]. [c.151]

    Возникающая в результате образования молекулярных орбиталей комплекса диаграмма энергетических уровней изображена на рис. 20-14. В ее нижней части находятся уровни шести связывающих орбиталей, заполненные электронными парами. Их можно пр)едставить как шесть электронных пар, поставляемых лигандами-донорами, и больше не обращать на них внимания. Точно так же можно исключить из рассмотрения четыре верхние разрыхляющие орбитали, являющиеся пустыми, за исключением предельных случаев сильного электронного возбуждения, которыми можно пренебречь. Несвязывающий уровень и нижний разрыхляющий уровень соответствуют двум уровням, и вд, к которым приводит расщепление кристаллическим полем (см. рис. 20-13). Мы будем продолжать называть их по-прежнему уровнями 12д и е даже в рамках молекулярно-орбитального подхода. Но важно отметить разницу в объяснении расщепления между этими уровнями. В теории кристаллического поля оно является следствием электростатического отталкивания, а в теории поля лигандов-следствием образования молекулярных орбиталей. Как мы убедились в гл. 12 на примере молекул НР и КР, теория молекулярных орбиталей позволяет охватить все случаи от чисто ионной до чисто ковалентной связи. Поэтому выбор между теорией кристаллического поля и теорией поля лигандов основан лишь на рассмотрении одной из двух предельных моделей связи. В комплексе СоР довольно заметно проявляется ионный характер связи, потому что, как можно видеть из рис. 20-14, орбитали лигандов располагаются по энергии ниже орбиталей металла и ближе к связывающим молекулярным орбиталям. Поэтому связывающие молекулярные орбитали по характеру должны приближаться к орбиталям лигандов, а это должно обусловливать смещение отрицательного заряда в направлении к лигандам. Таким образом, связи в данном случае должны быть частично ионными. [c.235]

    Классическим примером системы с двумя металлическими центрами может служить дигидрат димера ацетата меди(И). Структура этой молекулы показана на рис. 11.6, где в качестве оси г взята ось связи металл-металл. Ионы меди(П) имеют i -кoнфигypaцию. Установлено, что при низких температурах данное соединение диамагнитно, а при близких к комнатной парамагнитно. Молекулу этого комплекса можно рассматривать как систему с двумя молекулярными орбиталями, представляющими собой по существу орбитали металла (со значительным вкладом мостиковой ацетатной группы). На рис. [c.151]

    К сожалению, в большинстве парамагнитных комплексов ионов переходных металлов число атомов настолько велико, что расчет методом МО всего комплекса практически невозможен. Кроме того, даже если число атомов приемлемо, встает вопрос, может ли расчет, проведенный по расширенному методу Хюккеля или по методу ЧПДП, дать разумные волновые функции для соединений с такой большой разницей в величинах зарядов, какая существует между ионом металла и лигандом. При рассмотрении таких систем предполагается, что ион металла дает по крайней мере меньшее возмущение к вкладу протона в молекулярную орбиталь, представляющую собой главным образом МО неподеленной пары, и в другие молекулярные орбитали свободного лиганда, участвующие в связывании. Это допущение разумно для большинства комплексов, в которых прочность связи металл — лиганд составляет 10—20 ккал/моль. С учетом этого приближения проводится расчет по методу МО свободного лиганда и анализ электронной плотности с использованием волновых функций нейтрального лиганда (см. гл. 3). Последний позволяет определить, какими должны быть величины Л, если на каждой из орбиталей, которые, как ожидается, смешиваются с орбиталями металла при образовании комплекса, находится по одному электрону. Результаты таких расчетов для различных замещенных пи-ридинов представлены в табл. 12.1. [c.182]

    Наиболее строгое объяснение природы связи в комплексных соединениях достигается применением метода молекулярных орбиталей. Этот метод значительно сложнее теории кристаллического поля расчет энергии связи в комплексных соединениях по методу МО требует использования мощных вычислительных машин. По теории кристаллического поля расчеты несравненно проще, и ею нередко пользуются при рассмотрении объектов, к которым она не вполне применима, для получения ориентировочных оценок. Для комплекса волновая функция молекулярной орбитали фмо представляет собой линейную комбинацию, состоящую из волновых функций орбитали центрального атома металла фм и групповой орбитали лигандов 2сфь (линейная комбинация определенных орбиталей лигандов)  [c.127]

    Электроны, находящиеся на орбиталях 29 в комплексах, где отсутствуют л-связи, имеют энергию, мало отличающуюся от их энергии Б иесвяз-анном атоме металла приближенно можно считать, что они остаются на своих атомных орбиталях. При строгом рассмотрении считается, что электроны, занимающие в свободном атоме металла орбитали с1ху, с1уг и при образовании комплекса переходят на несвязывающие молекулярные орбитали /2 , которые по энергии и форме электронных облаков мало отличаются от атомных орбиталей. [c.129]

    СЫ- или СО),, т. е. имеет место делокализация электронов, можно показать с помощью спинрезонансной спектроскопии. Необходимо построить молекулярные орбитали комплексных соединений подобно тому, как это было показано при рассмотрении молекулярных орбиталей СН4 (разд. 6.3.4). Для этого берутся определенные линейные комбинации молекулярных орбиталей лигандов, которые имеют такую же симметрию, как и атомные -орбитали центрального иона. Линейные комбинации для октаэдрических комплексов приведены в табл. А.28, а в более наглядном виде—на рис. А.58. (Индексы симметрии а1е, е , (ы и т. д. взяты из системы обозначений, принятых в теории групп, и здесь не обсуждаются.) Молекулярные орбитали комплексных соединений образуются линейной комбинацией таких атомных орбиталей металла и орбиталей лиганда, которые имеют одинаковую симметрию, так как в этом случае наблюдается максимальное перекрывание. Результаты энергетических расчетов молекулярных орбиталей представлены на рис. А.59. Разрыхляющие орбитали отмечены звездочкой. Заполнение электронами происходит, как обычно, попарно. Если в образовании связи принимают участие-12 электронов от шести октаэдрических лигандов и п -электронов металла, то первые заполняют связывающие и- и -орбитали, а -электроны — несвязывающие t2e- и разрыхляющие вг -орбитали. Последние две молекулярные орбитали играют ту же роль, как и в теории поля лигандов. Их расщепление также обозначают 10/) , хотя на энергию расщепления влияет перекрывание при образовании ковалентных связей. [c.136]

    Указанием на наличие связей М—М могут служить относительно более короткие расстояния между атомами металла. Возможность образования связей М—М в основном определяется такими факторами, как степень окисления металла, вид лигандов и др. Магнитные свойства многих этих соединений также не могут непосредственно свидетельствовать о простом спаривании электронных спинов атомов металла и образования связи М—М. На магнитных свойствах могут сказываться не только М—М-взаимодействия, но и сильное перекрывание орбиталей атомов металла и лигандов. Например, в КиОг молекулярные орбитали имеют значительную протяженность. Это соответствует образованию энергетических зон, что сильно влияет на магнитные свойства соединения. [c.616]

    Электроны, находящие< я на орбиталях в комплексах, в которых отсутствуют п-связи, имеют энергию, мало отличающуюся от их энергии в несвязанном атоме металла приближенно можно считать, что эти электроны остаются на своих атомных орбиталях. При строгом рассмотрении считается, что электроны, занимающие в свободном атоме металла орбитали / у, и образовании комплекса переходят на не-свяэывающие молекулярные орбитали у, которые по энергии и форме мало отличаются от атомных ороиталей. [c.137]

    Учет л-связей. До сих пор мы пре небрегали я-связью, хотя данные, приведенные в табл. 7-10, наводят на мысль о необходимости ее учета с позиций теории молекулярных орбиталей. зй Орбитали металла имеют ту же симметрию, что и я-молекулярные орбитали лиганда. Следовательно, /гя ОРбитали, которые ранее называли несвязы Бающими, в действительности мо гут принимать участие в обра зовании я-связи. "Метод построения молекулярных орбиталей с участием я-орбиталей лигандов во многом сходен с методом построения молекулярных а-орбиталей. з -Орбитали расщепляются на связывающие и разрыхляющие,как показано на рис. 7-6. Снижение энергии для ая Связывающих орбиталей увеличивает разность в энергии между I2 - и незатронутой разрыхляющей ор биталью. Это увеличивает величину ООд А), и, следовательно, мы можем сказать, что лиганд, способный образовать я-связи, более сильный по сравнению с тем, который не может их образо аать. Согласно теории молекулярных орбиталей, увеличение раз ности в энергиях между и е -орбиталями, обусловленное а-связью, ответственно за спаривание электронов и образование низкоспиновых комплексов. В теории кристаллического поля это приписывается увеличению электростатического поля лиганда, а согласно теории молекулярных орбиталей, расщепление обусловлено увеличением ковалентности связи, а не увеличением электро татического поля. [c.270]

    Вполне возможно повышение электронной плотности на лигандах в том случае, когда уровень орбиталей лигандов ниже уровня орбиталей иона металла — это происходит у связывающих орбиталей (у разрыхляющих, наоборот, электронная плотность повышается у металла). Теория молекулярных орбиталей позволяет также учесть и возможность образования л-связей за счет 4 -орбиталей иона металла (т. е. орбиталей, которые теория кристаллического поля относит к несвязывающим) и л-орбиталей лигандов. Молекулярные орбитали системы лигандов и атомная орбиталь центрального иона должны обладать одинаковыми свойствами симметрии. В качестве примера рассмотрим октаэдрический комплекс с шестью лигандами. [c.225]

    Простая связь образована только а-молекулярными орбиталями. Двойная связь состоит ия одной а- и одной я-связи, тройная — из одной а- и двух ортогональных я-свя-эей. Четверная связь, кроме орбиталей тройной связи, включает еще орбитали й-связи. Наибольшей прочностью обладают а-связгг, наименьшей — 6-связи. В биядерных коьшлексах переходных металлов, в к-рых реализована [c.281]

    Таким образом, для построения молекулярной орбитали нужно удовлетворить требованиям как симметрии, так и энергии. Например, с энергетической точки зрения 2 - и 2р-атомные орбитали могли бы образовать химическую связь. Однако по соображениям симметрии р - и /) -орбитали одного атома в гомоядерной двухатомной молекуле не могут сочетаться с 2 -орбитаяью второго атома, поскольку они принадлежат к различным неприводимым представлениям (см рис. 6-15). С другой стороны, 3 /-орбитали переходных металлов первого периода, несмотря на сходство симметрии, не образуют молекулярных орбиталей с орбиталями лигандов по энергетическим соображениям. Подтверждением этого могут служить квантовохимические расчеты для дигидридов переходных металлов [11]. [c.267]

    Качественная картина молекулярных орбиталей при образовании связи металл — этилен была дана Дьюаром и Шаттом и Дункансоном в начале 50-х годов и выдержала испытание временем и сопоставлением с современными неэмпирическими расчетами. Ее существенной особенностью является взаимодействие между заполненной связывающей д-орбиталью этилена с вакантными й-, 5- или р-орбиталямм металла. Это приводит к переносу электронов с этилена на металл, однако имеется компенсирующий поток, направленный в противоположную сторону и обусловленный перекрыванием заполненных й- или р-орбиталей металла с вакантной разрыхляющей л-орбиталью этилена обычно это называют обратной связью. Участвующие в этой схеме орбитали показаны на рис. 12.22. [c.282]

    Каталнзаторы-металлы. Металлы обычно значительно активнее оксидов и обладают более универсальным каталитич. действием, хотя, как правило, менее селективны. Наиб, универсальны металлы VIII гр. периодич. системы, особенно Pt и Pd, катализирующие разл. р-ции окисления, гидрирования, дегидрирования и т.д. при низких т-рах (комнатной и более низких). Каталитич. активность определяется электронной конфигурацией и симметрией d-орбиталей поверхностных атомов. В хим. взаимод. с молекулами реагирующих на пов-сти в-в участвуют только те d-орбитали, к-рые направлены от пов-сти наружу и имеют одинаковую группу симметрии с молекулярными орбиталями реагентов. Участие d-электронов в хим. связи металла с адсорбиров. молекулами подтверждено методами фотоэлектронной и УФ-спектроскопии для Pt-катализатора. [c.540]

    Двухатомные оксиды. Существуют два оксида, являющиеся двухатомными молекулами,— это оксиды углерода и азота (табл. 4.1). Оксид углерода стабилен, и его физические свойства подобны свойствам Na. Эти соединения близки не только по молекулярной массе и по длинам связей, но можно считать, что они подобны и по типу связи. Поляризация С0+ противоположна ожидаемой из величин электроотрицательностей. Это можно объяснить, если считать, что несвязывающая орбиталь углерода sp-гибридизована и вытянута, однако несвязы-вяющая орбиталь кислорода почти сферическая и находится вблизи атома О. Предполагают, что я-связь в этом случае такая же, как у Na, и разрыхляющая я -орбиталь оказывается вакантной. Оксид углерода координируется атомами металлов с образованием карбонилов металлов, содержащих связь М—СО, и полагают, что при этом стабилизация происходит за счет перехода пары электронов с <т-молекулярной орбитали -оксида углерода и обратного перехода d-электронов с атома или иона металла на я -разрыхляющую орбиталь оксида углерода. [c.150]

    Переходы молекулы из одного состояния в друтое сопровождаются перераспределением электронной плотности. Имеется несколько способов разделять наблюдаемые переходы по типам изменений, происходящих в молекуле под действием электромагнитного излучения. Электронные спектры поглощения молекул, наблюдаемые в УФ- и видимой областях спектра, связаны, главным образом, с возбуждением электронов валентной оболочки. Принято считать, что при возбуждении меняется состояние (энергия и волновая функция) только одного электрона. Одноэлектронные волновые функции молекулы (молекулярные орбитали) принято обозначать в соответствии с типом связи между атомами. Орбитали, симметричные относительно оси связи, обозначаются а. Если орбитали не меняют знака вдоль связи, они являются связывающими. Им соответствуют наиболее глубоко расположенные энергетические уровни. Электроны, находящиеся на этих орбиталях, обеспечивают а-связь между атомами. Если а-орбиталь меняет знак между связываемыми атомами, она является разрыхляющей и обозначается а. Соответствующий ей энергетический уровень расположен много выше уровней орбиталей несвязанных атомов. Орбитали, меняющие знак на оси связи, обозначаются как тг-орбитали, которые тоже могут быть как связывающими (тс), так и разрыхляющими (тг). Уровни этих молекулярных орбиталей расположены соответственно ближе к уровням несвязывающих атомных орбиталей. При возбуждении могут меняться и состояния электронов, не участвующих в связи, орбитали которых локализованы на отдельных атомах ( -электроны). В спектрах комплексов ионов переходных металлов участвуют электроны, расположенные на с1-орбиталях. Электронные переходы обычно обозначают символами, соответствующими исходному и конечному одноэлектронным состояниям (например, а->а, тг->тг, п- а, и—). Однако по мере увеличения числа атомов в молекуле классификация электронньгх переходов усложняется. [c.221]

    В аналогичном диинденильном соединении железа ароматичность инденильных радикалов достигает такой степени, что бензольные кольца гидрируются легче пятичленных, но в других отношениях диинденилы менее стабильны, чем дициклопента-диенилы, а флуоренильные соединения пока неизвестны. Факты, подобные этому, стимулировали дальнейшее изучение ароматичности теоретическими методами, применимыми к ферроцену. Интересное предположение [34] относится к циклобутадиену, имеющему молекулярные орбиты нужной симметрии для образования связей с ( -орбитами металла. Предполагается, что при присоединении к металлу он может оказаться более или менее ароматичным. [c.46]

    Авторы дают следующее объяснение полученных данных [461 с позиций метода молекулярных орбиталей, как указывалось выше. Трехцентровый переходный комплекс, ведущий к перераспределению связей в карбокатионах, стабилизирован благодаря наличию вакантной связывающей молекулярной орбитали, на которой могут разместиться два электрона мигрирующей группы. В радикалах на этой орбитали располагается неспаренный электрон, вследствие чего один из электронов мигрирующей группы вынужден занять энергетически менее выгодное положение на несвязывающей молекулярной орбитали в переходном комплексе. Но в радикале, вошедшем в координационную сферу поверхностного атома платины, положение резко меняется. Антисвязывающая молекулярная орбиталь трехцентрового радикала имеет симметрию, необходимую для взаимодействия с незаполненной л-орбиталью металла, что сокращает энергетический барьер переходного состояния при перераспределении связей. По этой причине свойства свободных радикалов на поверхности металла приближаются к свойствам карбокатионов в жидкой фазе. Связь поверхностных радикалов с катализатором похожа на связь в комплексах металл — олефин, и 5 -металлы, образующие наиболее прочные связи с олефинами, отличаются наибольшей активностью в реакциях 1—2-смещения алкильных групп в алканах. [c.16]


Смотреть страницы где упоминается термин Связь металл молекулярных орбит: [c.194]    [c.177]    [c.98]    [c.362]    [c.363]    [c.164]    [c.142]    [c.187]    [c.42]    [c.60]    [c.404]    [c.55]    [c.60]    [c.404]   
Химия малоорганических соединений (1964) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Орбита

Орбиты связи

Связи в металлах



© 2024 chem21.info Реклама на сайте