Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие ядерное квадрупольное

    Обзорные работы, посвященные спектроскопической технике, включают такие методы, как ИК- [Ю, 12— 4], Раман- [10, 13, 14], УФ-спектроскопию [8, 10, 12—14, 37], дисперсию оптического вращения [10, 12, 14], круговой дихроизм [10, 13, 36, 37], ЯМР [12, 14, 36, 37], ядерный квадрупольный резонанс [14] и ЭПР [13]. Исследования других электронных свойств нуклеозидов, таких как распределение зарядов и константы ионизации [12], также рассмотрены в обзорах. Помимо методов УФ- и ЯМР-спектроскопии наиболее широко используемым методом идентификации нуклеозидов является масс-спектрометрия. Техника исследования обобщена в [10, 12, зе, 39], некоторые более поздние усовершенствования, особенно удобные для получения спектров малых количеств нелетучих лабильных веществ, описаны в [34, 40]. Изучены также термодинамические свойства нуклеозидов, что может быть полезно для понимания -взаимодействия компонентов нуклеиновых кислот друг с другом [14]. [c.76]


    Первый член описывает расщепление в нулевом поле, следующие два члена—влияние магнитного поля на спиновую мультиплетность, остающуюся после расщепления в нулевом поле члены с Ац и являются мерой сверхтонкого расщепления параллельно и перпендикулярно главной оси, а Q —мерой небольших изменений в спектре, вызванных ядерным квадрупольным взаимодействием. Все эти эффекты обсуждались в гл. 9. Последний член учитывает тот факт, что ядерный магнитный момент может непосредственно взаимодействовать с внешним полем Яд = Нц /, где у — гиромагнитное отношение ядра, а Р — ядерный магнетон Бора. Он описывает ядерный эффект Зеемана, который вызывает переходы в ЯМР. Зеемановское ядерное взаимодействие может влиять на спектр парамагнитного резонанса только в том случае, когда неспаренные электроны взаимодействуют с ядром в ядерном сверхтонком или квадрупольном взаимодействиях. Если даже такое взаимодействие и реализуется, то его величина пренебрежимо мала по сравнению с величинами других эффектов. [c.219]

    Спектроскопия ядерного квадрупольного резонанса (ЯКР), относящаяся к радиоспектроскопическим методам, и метод мессбауэровской спектроскопии, называемый также методом ядерного гамма-резонанса (ЯГР), используются в структурных исследованиях и позволяют получать уникальную информацию о распределении электронной плотности и характере химических связей по сдвигам резонансных сигналов ядер и параметров градиента неоднородного электрического поля на ядрах, создаваемого электронным окружением. Эти данные важны как опорные для теоретической и квантовой химии. Оба метода применимы для исследования только твердых образцов. Исключительно высокая чувствительность обоих методов к малейшим изменениям электрических полей открывает возможность исследования широкого круга проблем, связанных с внутри- и межмолекулярными взаимодействиями. [c.87]

    Наблюдаемое в 7-резонансных спектрах квадрупольное расщепление возникает вследствие взаимодействия ядерного квадрупольного момента Q с градиентом электрического поля в области ядра. Величина Q отражает отклонение симметрии ядра от сферической ядра сплющенной формы имеют отрицательный момент, а ядра вытянутой формы характеризуются положительным моментом. Если / = О или /г, то ядро сферически симметрично и для него (3 = 0. [c.251]

    В рассматриваемой молекуле ядро находится в облаке электронной плотности. Электрический градиент определяется через усредненный по времени электрический потенциал, создаваемый электроном. Кроме того, градиент электрического поля описывается симметричным тензором V 3 X 3, след которого равен нулю. Ядерный квадрупольный момент также описывается тензором Q 3 х 3. Энергия взаимодействия ядерного квадруполя EQ выражается как [c.261]


    Электронное окружение квадрупольного ядра в молекуле, не обладающее сферической симметрией, создает неоднородное электрическое поле, которое характеризуется градиентом напряженности электрического поля на ядре (рис. IУ.2). Имеет место взаимодействие ядра, обладающего электрическим квадрупольный моментом eQ с градиентом поля ед. Энергия этого взаимодействия зависит от ориентации эллипсоидального квадрупольного ядра относительно системы главных осей тензора градиента электрического поля, а ее мерой является константа квадрупольного взаимодействия Аналогично тому как квантуется энергия вращающегося электрона в поле положительного ядра, квантуется и энергия квадрупольного взаимодействия. Иными словами, возможны различные квантованные ориентации ядерного квадрупольного момента и соответствующие квадруполь-ные уровни энергии. Эти уровни присущи данной молекулярной системе, т. е. являются ее свойством, в отличие от зеемановских уровней ядер и электронов в спектроскопии ЯМР и ЭПР, которые появляются при воздействии внешнего магнитного поля. Разности энергий, как и сами энергии квадрупольного взаимодействия, зависящие от электрического квадрупольного момента ядра eQ и градиента неоднородного электрического поля е , невелики, и переходы соответствуют радиочастотному диапазону 1(И, 10 Гц, Прямые [c.90]

    Методом спинового эха в двойном резонансе были измерены константы квадрупольного взаимодействия и в М(С0)50 и изучено прямое диполь-дипольное взаимодействие ядерных спинов. Из этих данных было рассчитано межъядерное расстояние Мп—О (1,61 0,01) 10- нм, прекрасно согласующееся с найденным методом нейтронографии (1,601 0,016) 10 нм. Для Мп(С0)5Н позднее было определено, что расстояние Мп—Н равно (1,59 0,02)Х Х10-> нм. Такие исследования пока очень редки, но являются примером того, что сходные данные могут иногда быть получены раз- [c.102]

    Ядро обладает собственным моментом импульса — спином. Электроны, окружающие ядро в атоме или молекуле, создают в точке нахождения ядра потенциал К Взаимодействие собственного момента ядра — спина с электронным моментом импульса атома или молекулы приводит к их связи, к образованию результирующего момента. Мерой такого взаимодействия служит константа ядерной квадрупольной связи eQi , где е — заряд электрона д—ядерный квадрупольный момент q = (д У)/(дz ) — градиент электрического поля, создаваемого электронами у ядра г — ось симметрии заряда для линейной молекулы она совпадает с ее осью. Ядерный квадрупольный момент характеризует отклонение распределения заряда в ядре от сферического. Для ядер со спином, равным О или /2. [c.134]

    Спин-решеточная релаксация, обусловленная взаимодействием электрических квадрупольных моментов ядер со спином />1. с электрическими полями молекулы — еще один механизм обмена энергией между спиновой системой и решеткой. По этой причине линии в спектрах таких ядер, как Н, М, и др., могут быть очень широкими. Ядерная квадрупольная релаксация может оказать влияние на ядра со спином /=1/2, если они находятся на близком расстоянии от ядра со спином 7>1. [c.61]

    Эффект ядерного квадрупольного резонанса обусловлен взаимодействием сферически несимметричного ядра атома с неоднородным электрическим полем окружающих его электронов. При этом мерой отклонения распределения заряда ядра от сферического является ядерный электрический квадрупольный момент, мерой неоднородности электрического ноля — градиент напряженности электрического поля. [c.742]

    Из табл. 1.1 можно видеть, что все ядра с / > 1/2 обладают ядерным квадрупольным моментом вследствие несферического распределения ядерного заряда. Поэтому такие ядра могут взаимодействовать с градиентами внешних электрических полей, в особенности с градиентами полей электронных оболочек моле- [c.26]

    Ядерное квадрупольное взаимодействие [c.33]

Рис.1.11. Ядерное квадрупольное взаимодействие. Расщепление уровней энергии за счет ядерного квадрупольного взаимодействия (вверху) и соответствующий спектр (внизу). Расщепление уровней энергии меняется в зависимости от ориентации спина относительно магннтного поля В . На рнс. показана ориентация, при которой расщепление максимально Рис.1.11. Ядерное квадрупольное взаимодействие. Расщепление уровней энергии за счет ядерного квадрупольного взаимодействия (вверху) и <a href="/info/399343">соответствующий спектр</a> (внизу). Расщепление уровней энергии меняется в зависимости от ориентации <a href="/info/132019">спина относительно</a> магннтного поля В . На рнс. показана ориентация, при <a href="/info/1822656">которой расщепление</a> максимально
    Системы со спинами I > 1/2 в ориентированной фазе. В благоприятных условиях определенные многоквантовые переходы нечувствительны к ядерному квадрупольному взаимодействию. Эти переходы позволяют наблюдать такие спектральные характеристики, которые в одноквантовом спектре обычно скрыты из-за намного более сильного квадрупольного взаимодействия. Это свойство использовалось в двухквантовой спектроскопии ядер дейтерия [5.7, 5.8] и азота-14 [5.27, 5.30]. [c.297]


    В твердых телах резонансные линии уширены вследствие взаимодействия между ядрами (диполь-дипольная и электрическая квадрупольная связи и др.) и взаимодействия ядерной системы с ее окружением. При повышении температуры интенсивность движения молекул твердого тела растет и уменьшается ширина линии за счет усреднения локальных полей. Для газов и жидкостей, где происходит довольно быстрое движение молекул, ширина линии сильно уменьшается. Вообще следует иметь в виду, что заторможенное и свободное вращение молекул и групп в молекулах, либрация, квантово-механический туннельный эффект, самодиффузия и другие формы движения способствуют сужению резонансной линии. [c.210]

    Можно показать в общем виде, исходя из квантово-механического рассмотрения симметрии, что ядра со спином / > /г, как правило, не обладают точно сферическим распределением заряда [89]. У всех ядер спиновая ось является осью симметрии и распределение заряда представляет эллипсоид вращения, который может быть вытянутым или сплюснутым. Это отклонение от сферической симметрии, которое характерно для ядер с / > >/2, количественно выражается электрическим квадрупольным моментом ядер. Квадрупольный момент является тензором, но его можно охарактеризовать единичной скалярной величиной Q, называемой электрическим квадрупольным моментом. Важность ядерного квадрупольного момента в явлении магнитного резо нанса связана с тем, что он в заметной степени взаимодействует с неоднородным атомным электрическим полем и это взаимодействие обычно приводит к резким изменениям спектра ЯМР особенно в твердых веществах. [c.35]

    Хлор, встречающийся в природе, содержит 75,4 ат. /о С и 24,6ат.% С1. Можно получить образцы, обогащенные тем или другим стабильным изотопом, и обогащенный образец использовать в методе меченых атомов. С1 — искусственный радиоактивный изотоп (Р, 2-10 лет) — также можно применить в качестве радиоактивного индикатора. Оба изотопа, встречающиеся в природе, имеют ядерный спин, и использование метода ЯМР в принципе возможно для соединений, содержащих хлор, хотя в этом отношении имеется мало опубликованных данных. Оба ядра имеют электрический квад-рупольный момент. Изучение взаимодействия ядерного квадрупольного момента с неоднородным электрическим полем, обусловленным распределением электронов вокруг атомов, дает интересную информацию о характере связей хлора. [c.422]

    Если симметрия окружения атома железа меньше кубической, то в результате взаимодействия ядерного квадрупольного момента с градиентом электрического поля, обусловленным асимметричным распределением электронной плотности, может происходить расщепление ядерного уровня с энергией 14,4 кэВ. Поскольку этому уровню соот-вествует спин /= /2, степень его вырождения равна (2/+ 1), т.е. четырем. Из-за квадрупольного взаимодействия этот уровень расщепляется на два подуровня, каждый из которых дважды вырожден. Спектр поглощения представлен двумя пиками одинаковой интенсивности (в случае поликристаллического поглощающего образца). Величина расщепления АЕц непосредственно характеризует градиент электрического поля, зависящий от локального электронного окружения и орбитального углового момента. Трехвалентное железо Ре (в высокоспиновом состоянии) имеет наполовину заполненную З -оболочку, и его орбитальный угловой момент равен нулю, поэтому величина квадрупольного расщепления для него обычно мала, < 1,0 мм/с. У двухвалентного железа Ре на следующей за наполовину заполненной З -оболочкой имеется дополнительный электрон, поэтому Ре может обладать нескомпенсированным орбитальным угловым моментом, что приводит к значительному квадрупольному расщеплению с А ц > 2,0 мм/с. [c.11]

    Ядро с ядерным спиновым квантовым числом I 1 также характеризуется электрическим моментом, и неспаренный электрон взаимодействует как с магнитным ядерным, так и с электрическим моментом. Градиент электрического поля на ядре может взаимодействовать с ква-друпольным моментом (такое взаимодействие изучается с помощью спектроскопии ядерного квадрупольного резонанса), и это взаимодействие влияет на энергии электронных спиновых состояний через ядерно-электронное магнитное взаимодействие как возмущение второго порядка. Влияние квадрупольного взаимодействия обычно носит сложный характер, поскольку этому взаимодействию сопутствует значительно большее магнитное СТВ. Ориентация ядерного момента квантуется как по отношению к градиенту электрического поля, так и по отношению к направлению магнитного поля. Если направление магнитного поля и оси кристалла параллельны, квадрупольное взаимодействие приводит только к небольшому смещению всех энергетических уровней на по- [c.45]

    Конкуренция квадрупольного электрического и магнитного полей приводит также к появлению дополнительных линий, которые обычно запрещены правилом отбора Аш = 0. Возможны также переходы Дш = 1 и Дш = 2 [22]. Константу ядерного квадрупольного взаимодействия дает анализ запрещенных линий. Для этого исследуют методом ЭПР монокристалл диамагнитного соединения, в решетку которого внесено изучаемое соединение. Спектр с такими переходами получен (рис. 9.24) для бис-(2,4-пентандионата) меди(П) [ Си(асас)2], внесенного в Pd(a a )2. Запрещенные переходы отмечены на рис. 9.2А,А стрелками, другие линии характеризуют четыре разрешенных перехода [c.46]

    Ядерный квадрупольный резонанс. Квадрупольный момент характеризует отклонение распределения электрического заряда ядра от сферической симметрии. Ядерный квадрупольный резонанс (ЯКР) можно наблюдать, если ядро находится в неоднородном электрическом поле. Тогда при взаимодействии градиента электрического поля с квадрупольным моментом ядра уровни энергии ядра будут расщеплены. Величина расщепления зависит от величины квадру-польного момента ядра и градиента поля. Если теперь на образец наложить переменное магнитное поле соответствующей частоты (перпендикулярное градиенту электрического поля), то под его воздействием магнитные моменты ядра будут изменяться и вещесл во станет поглощать энергию этого поля. [c.63]

    Этот новый ВИД спектроскопии твердых тел может дать химику полезную информацию о непосредственном окружении ядра, т. е. об его электронных оболочках. Однако этим методом можно исследовать не слишком легкие ядра (в настоящее время ядра тяжелее, чем К). Смещение резонансных линий, связанное с различными видами химической связи между атомами излучателя (или, наоборот, поглощающего излучения вещества), называют изомерным смещением , соответственно химическим смещением (открыто на атомах железа). Это смещение происходит в результате взаимодействия с 5-электронами. Расщепление спектральных линий, связанное с взаимодействием между электрическим ядерным квадрупольным моментом (разд. 4.2) и орбитальным моментом р- и -электронов, называют квадрупольным расщеплением. Тем самым становится возможным отдельно исследовать распределение 5-, р- и -электронов. Большие успехи были достигнуты, например, при исследовании соединений железа и олова методом мёссбауэров-ской спектроскопии. [c.129]

    В у-резонансиом спектре проявляются следующие осЕювные типы взаимодействий изомерт>1Й сдвиг, ядерное квадрупольное взаимодействие и сверхтонкое магнитное взаимодействие. [c.339]

    Р. изучает неск. типов переходов переходы между уровнями энергии, соответствующими вращат. движению молекул с постоянным электрич. моментом (см. Микроволновая спектроскопия), переходы, обусловленные взаимодействием электрич. квадрупольного момента ядра с внутр. электрич. полем в твердых телах (см. Ядерный квадрупо.пчый резонанс) и взаимодействием электронов проводимости с внеш. магн. полем (см. Циклотронный резонанс) переходы, обусловленные взаимодействием магн. моментов электронов или ядер с внеш. магн. полем в газах, жидкостях и твердых телах (см. Электронный парамагнитный резонанс, Ядерный магнитный резонанс). [c.171]

    Привлекательная особенность ЯМР-спектроскопии состоит в том, что исследуемая молекула в целом прозрачна это позволяет беспрепятственно исследовать выбранный простой класс ядер, обладающих магнитными свойствами. Область протонного резонанса не будет содержать пиков, обусловленных какими-либо другими атомами в молекуле, так как, даже когда эти атомы магнитны, их линии поглощения смещены на расстояния, огромные по сравнению с диапазоном спектра протонного резонанса. Атомы углерода и кислорода, образующие скелет молекулы, вообще не дают самостоятельного эффекта. Присутствие других магнитных ядер (например, азота, фтора, фосфора, дейтерия) иногда сказывается на спектрах протонного резонанса, но только в виде нарушения положений пиков нли их множественности, но эти эффекты, как правило, носят предсказуемый Зсарактер. Ядра других галогенов (хлора, брома и иоДа), хотя и обладают магнитными свойствами, не оказывают влияния на множественность пиков протонного резонанса, так как электрическое поле, обусловленное ядерным квадрупольным моментом, взаимодействует с окружающими полями и изменяет ориентацию ядерного спина настолько быстро, что суммарный эффект его действия на соседние протоны сводится к нулю. Таким образом, ЯМР-спектроскопию чаще всего применяют в органической химии в тех случаях, когда требуются данные о числе водородных атомов различных типов в молекуле, а также об их взаимодействии между собой и с другими атомами, входящими в состав молекулы. Как и следовало ожидать, самые простые спектры обычно дают соединения с небольшим числом типов водородных атомов. Большие молекулы, обладающие низкой симметрией, как правило, дaюt довольно сложные спектры, но даже в этом случае удается получить ценные данные, не проводя полного анализа спектра ЯМР и не идентифицируя все пики. [c.257]

    ЯДЕРНЫЙ КВАДРУПОЛЬНЫЙ РЕЗОНАНС, явление резонансного излучения или поглощений в-вом электромагн. энергии, обусловленное существованием зависимости части энергии электрич. электронно-ядерного взаимод. от взаимной ориентации несферически распределенных электрич. зарядов атомного ядра и электронов атомных оболочек, а также электрич. зарядов, лежащих за пределами атомного радиуса. Изменение ориентации атомного ядра относительно окружающих его электронов и зарядов имеет дискретный характер в силу квантовомех. причин, что вызывает появление системы уровней энергии, между к-рыми возможны переходы с частотой vp. Мерой деформации зарядового распределения атомного ядра является его алектрич. квадрупольный момент eQ. Неоднородность электрич. поля, создаваемого электронами атомных оболочек и зарядами, лежащими за пределами атомного радиуса, определяется тензором градиента напряженности электрич. поля (ГЭП) eqtj. Иа экспериментально наблюдаемых частот ЯКР можно определить константу ядерного квадрупольного взаимодействия —e Qqa и параметр асимметрии П= I (<7 — I.  [c.725]

    Отношение интенсивности центральной компоненты ( /п- — /г) линий 21, получающихся в результате квадрупольного взаимодействия в кристалле некубической симметрии, к полной интенсивности, включающей все дополнительные компоненты, равно Vio для ядер с / = Va и Vsr, для ядер с / = /г. Дислокации, образующиеся в кристалле при пластической деформации, приводят к локальным отклонениям от кубической симметрии и к появлению градиента электрического поля, который вызывает появление дополнительных компонентов, отстоящих от центрального компонента, который при эффектах первого порядка не изменяется при квадрупольном взаимодействии. Значения eq колеблются в некотором диапазоне, а дополнительные линии не резки и растянуты в широком диапазоне частот или напряженности поля, так что их нельзя наблюдать экспериментально. Это размывание дополнительных линий особенно заметно для Вг , Вг и ввиду больших ядерных квадрупольных моментов и антиэкранирующих факторов для этих атомов. Подобные эффекты можно обнаружить даже в случае весьма совершенных кубических кристаллов. Уаткинс установил [105], что в тер- [c.44]

    Ядра со спином имеют сферически симметричное распределение заряда и поэтому не взаимодействуют с электрическим полем молекулы. Ядра же со спином 1 и более имеют электрические квадрупольные моменты, и можно считать, что распределение заряда у этих ядер имеет форму сфероида, вокруг главной оси которого происходит вращение ядра. Квадрупольный момент может быть положительным (вытянутый сфероид) или отрицательньш (сплюснутый сфероид). Энергии сфероидальных зарядов зависят от их ориентации относительно градиентов окружающего электрического поля. В молекулах определенного типа, в которых преобладает сферическое или тетраэдрическое распределение заряда (например, в ионе аммония ЫН4), электрические градиенты либо отсутствуют, либо незначительны, вследствие чего не происходит возмущения квадрупольного момента за счет колебательных движений молекулы. Однако у большинства молекул градиенты электрического поля значительны и могут взаимодействовать с ядерными квадруполями. В результате колебательные движения остова таких молекул могут вызывать быстрые изменения спиновых состояний. Это еще один механизм обмена энергией между спиновой системой и решеткой, т. е. один из важных вкладов в спин-решеточную релаксацию он может приводить к заметному уширению резонансных сигналов. По этой причине линии в спектрах таких ядер, как или N (квадрупольный момент Q положителен) или О, и (Q отрицателен), могут быть настолько широкими, что их трудно или даже невозможно обнаружить. Ядерная квадрупольная релаксация может также оказывать влияние на ядра со спином /г, если они находятся в достаточной близости от ядра со ОПИНОМ 1. Мы рассмотрим эти вопросы в гл. 13. [c.35]


Библиография для Взаимодействие ядерное квадрупольное: [c.281]   
Смотреть страницы где упоминается термин Взаимодействие ядерное квадрупольное: [c.341]    [c.24]    [c.280]    [c.454]    [c.280]    [c.379]    [c.725]    [c.726]    [c.521]    [c.34]    [c.35]    [c.35]    [c.34]    [c.35]    [c.35]    [c.726]    [c.63]   
Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.72 ]




ПОИСК







© 2025 chem21.info Реклама на сайте