Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инициаторная РНК

    Заметим, что в состав защищенного участка входит инициирующий кодон AUG и что последовательности расположенных вслед за ним кодонов в точности соответствуют известной последовательности аминокислот N-конца вирусного белка оболочки. Еще одна интересная особенность этой последовательности состоит в том, что два участка, обозначенные фигурными скобками со звездочками, могут спариваться друг с другом. В результате инициирующий кодон может образовывать петлю (шпильку). Такие шпильки в инициаторных участках РНК образуются не всегда, однако они встречаются достаточно часто. [c.242]


    В заключение скажем, что определенные полиеновые соединения, имеющие гранс-олефиновые связи в 1,5-положениях и обладающие эффективными инициаторными и терминаторными функ-ц ями, можно заставить участвовать в реакциях стереоспецифи-ческой, неферментативной катионной циклизации. Они образуют полициклические физиологически активные продукты, имеющие только транс-конфигурацию [208, 209]. [c.341]

    Промоторные элементы генов одноклеточных эукариот — дрожжей — содержат сайты инициации (И), нуклеотидную последовательность ТАТА (обычно ТАТААА), а также другие элементы — активирующие последовательности (АП, UAS, англ. upstream a tivating sequen es), находящиеся перед сайтом инициации транскрипции (рис. 111, а). Кроме того, промотор может содержать элементы оператора О, участвующего в репрессии транскрипции. Расстояние между ТАТА-элементом и сайтом инициации может варьировать от 40 до 120 п. н., и в отличие, например, от промоторов позвоночных в промоторах дрожжей правильная точная инициация транскрипции сохраняется при изменении расстояния между сайтом инициации и ТАТА-элементом. Инициаторный элемент представляет собой особый участок, включающий нуклеотидную последовательность [c.196]

    Первая выборка содержала 40, а вторая зб последовательностей. Для выборки промоторов брались участки последовательностей от -I00 до точки инициации транскрипции. Последовательности сайтов инициации трансляции содержали по so нуклеотидов к 5 - и 3 - концу мРНК от инициаторного кодона. [c.232]

    Если пройти несколько дальше влево по нуклеотидной последовательности фага Q , то можно встретить группу из четырех нуклеотидов, которая может связываться с 16S-PHK так же, как это показано на рис. 15-14 для инициаторного участка А-белка в РНК фага R17. Аналогичные защищенные рибосомами ннициаторные последовательности были обнаружены в молекулах многих вирусных РНК, а также в молекулах некоторых специфических мРИК [101, 102]. [c.242]

    Для РНК фага MS2 была установлена полная последовательность всех 3569 нуклеотидов [118]. Некоторые участии этой последовательности показаны на, рис. 15-19. 5 -конец (средняя часть структуры, изображенной в верхнем левом углу) все еще несет трифосфатную группу инициаторного GTP. После ряда шпилек следует защищенный рибосомой участок [119а], который начинается инициаторным кодоном GUG. Этот факт служит прямым доводом в пользу того, что GUG, так же как и AUG, играет роль биологически важного инициаторного кодона. Нуклеотидная последовательность, расположенная вслед за инициаторным кодоном, в точности кодирует почти полностью установленную аминокислотную последовательность вирусного белка. Терминирующий кодон UAG обведен на рисунке рамкой. Вслед за ним расположена короткая межгенная область, включающая одну сторону шпильки, на конце которой расположен инициаторный кодон AUG для следующего гена. Далее расположена последовательность нуклеотидов, точно соот-в <ггву рщ я эцсрериментально установленной последовательности ами- [c.242]


    Другим интересным примером использования рибосом для защиты нуклеиновой кислоты от ферментативного гидролиза могут служить опыты с одноцепочечной ДНК бактериофага ФХ174 [121]. В этом случае рибосомы защищали последовательность нуклеотидов, в состав которой входил инициаторный кодон ATG. Этот кодон и следующие за ним семь других кодонов соответствовали известной N-концевой ам1и-нокислотной последовательности детерминируемого геном G белка шипов этого бактериофага. [c.244]

    У эукариот рибосомная 40S частица, несущая ряд факторов инициации и метионил-тРНКр, связывается преимущественно с 5 -концом цепи мРНК (как правило, кэпирован-ным), а затем скользит по цепи в направлении к З -концу без Т., потребляя АТФ, пока не натолкнется на триплет AUG, спаривающийся с антикодоном тРНКр и служащий инициаторным кодоном. [c.620]

    Хорошим примером полицистронной мРНК является РНК малого РНК-содержащего бактериального вируса (фага) MS2. Фаг MS2 — сферический он имеет диаметр 2,5 нм и молекулярную массу 3,6 10 дальтон. Фаг построен из 180 субъединиц белка оболочки с молекулярной массой 14700 дальтон каждая, одной молекулы так называемого А-белка с молекулярной массой 38000 дальтон и одной молекулы РНК с молекулярной массой 10 дальтон. После попадания фага в клетку Е. соИ (а также в бесклеточной системе трансляции) эта РНК служит матрицей для белка оболочки, А-белка и субъединицы РНК-репликазы с молекулярной массой 62000 дальтон, которая в состав фага не входит. Схема расположения соответствующих цистронов вдоль цепи этой мРНК дана на рис. 6. Цепь начинается с G, имеющего трифосфат на своем 5 -гидроксиле. Далее следует длинная некодирующая нуклеотидная последовательность. Общая длина 5 -концевой некодирующей последовательности 129 остатков в ней встречаются триплеты AUG и GUG, которые, однако, не являются инициаторными. Первый инициаторный кодон, GUG, начинает кодирующую последовательность А-белка (А-цистрон). А-цистрон имеет длину 1179 остатков и заканчивается терминаторным кодоном UAG. Затем идет некодирующая вставка длиной 26 остатков. Следующая кодирующая последовательность начинается с AUG и имеет длину 390 остатков это —цистрон белка оболочки (С-цистрон). Он оканчивается терминаторным кодоном UAA, и за ним непосредственно следует второй терминаторный кодон UAG. Последовательность длиной 36 остатков отделяет С-цистрон от S-цистрона, кодирующего субъединицу РНК-синте-тазы. S-цистрон начинается с AUG, имеет длину 1635 остатков и заканчивается UAG. За ним через один остаток (т. е. не в фазе) имеется еще один терминаторный триплет UGA. З -концевая некодирующая последовательность имеет общую длину 174 остатка и заканчивается аденозином со свободной г/мс-гликольной группиров- [c.20]

    В связи с рассмотрением РНК фага MS2, следует указать также на другой способ размещения разных кодирующих последовательностей в одной мРНК. Дело в том, что MS2 РНК кодирует еще и четвертый белок, названный белком лизиса, или L-белком (он, повидимому, участвует в лизисе хозяйской клетки на завершающей фазе инфекции). Этот белок закодирован участком РНК, начинающимся в конце С-цистрона, захватывающим всю 36-нуклеотидную вставку между С-цистроном и S-цистроном и заканчивающимся в пределах S-цистрона рамка считывания этого перекрывающегося L-цистрона сдвинута вправо на один остаток (+1 сдвиг), так что никакие его участки не транслируются при синтезе С-белка и S-белка. L-цистрон имеет свой инициаторный кодон AUG, не в фазе с кодонами С-цистрона, и, соответственно, свой терминаторный кодон UAA, не в фазе с кодонами S-цистрона. Эта ситуация изображена на рис. 7. Использование перекрывающихся кодирующих последовательностей в пределах одной мРНК встречается, однако, не часто и свойственно, по-видимому, в основном вирусным системам, где экономия места для размещения цистронов играет особенно важную роль. [c.21]

    По-видимому, стабилизация двуспирального участка с участием инициаторного триплета либо за счет третичной структуры РНК, либо в результате специфического присоединения РНК-связьшающего белка, может полностью блокировать инициацию в данном участке. Так, очень похоже, что в MS2 РНК, а также в РНК родственных фагов R17, Г2 и др. третичной структурой заблокированы инициаторные триплеты как А-цистрона, так и S-цистрона. Инициация на А-цистроне происходит, вероятно, лишь в процессе синтеза РНК, когда полная пространственная структура еще не сформирована. Инициация на S-цистроне имеет место в процессе трансляции предшествующего С-цистрона рибосомы, считывая С-цистрон, расплетают РНК, освобождая участок с инициаторным триплетом S-цистрона из какого-то более стабильно свернутого состояния. Когда появляются готовые молекулы белка оболочки фага, снова происходит выключение инициации S-цистрона белок оболочки фага имеет специфическое сродство к нестабильной спирали, содержащей инициаторный AUG триплет (рис. 11), и, связываясь с ним, стабилизирует спираль. [c.24]

Рис. 10. Схема вероятной вторичной структуры (двуспиральной шпильки) участка РНК фага MS2, содержащего инициаторный кодон AUG цистрона белка оболочки фага (по J. А. Steitz, Nature, 1969, v. 224, p. 957 -964) Рис. 10. <a href="/info/1676451">Схема вероятной</a> <a href="/info/35984">вторичной структуры</a> (<a href="/info/167033">двуспиральной шпильки</a>) участка РНК фага MS2, содержащего <a href="/info/166654">инициаторный кодон</a> AUG <a href="/info/1339018">цистрона белка</a> оболочки фага (по J. А. Steitz, Nature, 1969, v. 224, p. 957 -964)

    Рибосома начинает читать мРНК со строго определенной точки ее последовательности, а именно с той, с которой начинается ее кодирующая часть. Как уже отмечалось, эта точка вовсе не есть самый крайний 5 -концевой нуклеотид мРНК, а как правило, расположена на определенном удалении, иногда значительном, от начала полинуклеотидной цепи. Рибосома должна каким-то образом узнать начальную точку считывания, связаться с ней, и только тогда начать трансляцию. Комплекс событий, обеспечивающих процесс начала трансляции, обозначается как стадия инициации. В инициации принимают участие специальный инициаторный кодон, инициаторная тРНК и белки, называемые факторами инициации. [c.56]

    Встреча рибосомы с новым инициаторным кодоном, либо на другой цепи мРНК, либо на этой же по направлению к З -концу от терминирующего кодона, приведет к новой инициации. Таким образом, [c.56]

    Инициаторная тРНК. Инициирующие кодоны узнаются специальной инициаторной тРНК. Антикодоном этой тРНК служит AU, который способен спариваться с инициирующим кодоном, как правило, с AUG, но также и с GUG, UUG, AUU или AUA, когда они являются инициирующими. Очевидно, здесь может иметь место необычное неканоническое спаривание по 1-му положению кодона (U G и U U), а также, в более редких случаях, нестрогое спаривание по 3-му положению кодона (С А, С U), отличающиеся от Криковского нестрогого соответствия при 3-м положении кодона в процессе элонгации. Это можно объяснить тем, что при инициации первичное кодон-антикодоновое узнавание происходит в Р-участке рибосомы, а не в А-участке, как в случае элонгации. [c.222]

    Оказалось, что в первичной ассоциации с мРНК и следующей затем инициации трансляции участвует, скорее, 30S субчастица, а не 70S рибосома. Именно 30S субчастица уводится из этой равновесной смеси на мРНК и затем вовлекается в первые стадии инициации. 50S субчастица присоединяется на более поздних стадиях инициации к 308-мРНК-инициаторному комплексу. Факторы инициации— прежде всего IF-3 (а также, возможно, IF-1)— способствуют сдвигу равновесия в сторону диссоциации свободных нетранслирующих рибосом на субчастицы. [c.225]


Смотреть страницы где упоминается термин Инициаторная РНК: [c.302]    [c.318]    [c.204]    [c.237]    [c.242]    [c.265]    [c.620]    [c.620]    [c.620]    [c.620]    [c.620]    [c.621]    [c.621]    [c.622]    [c.20]    [c.18]    [c.19]    [c.20]    [c.20]    [c.23]    [c.23]    [c.24]    [c.30]    [c.139]    [c.222]    [c.222]    [c.223]    [c.223]    [c.223]    [c.224]    [c.224]    [c.227]    [c.228]   
Биохимия Т.3 Изд.2 (1985) -- [ c.100 , c.101 , c.102 ]




ПОИСК





Смотрите так же термины и статьи:

Инициаторная тРНК

Инициаторные кодоны

Инициаторный комплекс

Информационная РНК инициаторный комплекс

Транспортные инициаторные

Триптофан-синтаза инициаторная

Тройственный инициаторный комплекс



© 2025 chem21.info Реклама на сайте