Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вычисление коэффициентов нелинейной зависимости по методу наименьших квадратов

    Метод спуска (метод Гаусса — Зейделя). В практике часто можно встретить случаи, когда вид зависимости хорошо известен исследователю, но неизвестные коэффициенты входят в нее нелинейно и никакими подстановками зависимость нельзя сделать линейной относительно коэффициентов. В этом случае при использовании метода наименьших квадратов мы получим нелинейную систему уравнений, решение которой обычно сопряжено с большими математическими трудностями. Если исследователь хочет непременно сохранить нелинейный вид зависимости для вычисления коэффициентов можно поступить следующим образом. [c.284]


    Вычисление коэффициентов нелинейной зависимости по методу наименьших квадратов [c.339]

    Вся процедура описания экспериментальных данных может быть существенно механизирована с помощью обычных численных методов, которые становятся все более популярными по мере распространения быстродействующих ЭВМ. Обычно как критерий описания выбирается метод наименьших квадратов, но применяемое аналитическое определение нельзя использовать, так как теоретическая зависимость параметров нелинейна. При наличии большой вычислительной машины минимизация среднеквадратичного отклонения может быть выполнена непосредственно численным методом [104]. Если такие вычисления невозможны, то используется аналитический метод последовательных приближений [183—1836]. Первое приближение для параметров потенциала берется, например, из графического метода, затем относительно этих параметров производится разложение в ряд Тейлора. При сохранении первых членов разложения относительно корректирующих поправок к параметрам потенциала получается система линейных уравнений. Если первое приближение параметров оказывается слишком грубым, то всю процедуру можно повторить, начиная со второго приближения, полученного в первом цикле. Уолли и Шнейдер [183а] применяли этот метод для определения параметров потенциала из вторых вириальных коэффициентов, а также в расчетах для некоторых инертных газов. Этот же метод расчета применялся для метана и закиси азота [1836]. [c.247]

    В литературе часто сообщается о значительных корреляциях параметров (г,/>0,9), особенно в работах по спектрофотометрии 5, 11, 12]. Причина этого состоит в большем или меньшем перекрывании электронных спектров поглощения, что при уточнении молярных коэффициентов погашения приводит к попарной корреляции параметров. Следовательно, в любой программе по нелинейному методу наименьших квадратов на последней итерации вместе со стандартными отклонениями параметров следует вычислять коэффициенты корреляции с тем, чтобы выявить любую недостаточность в данных, определяющих параметры. При исследовании равновесия, зависимого от pH в растворе [И], рекомендуется графически изображать теоретическую кривую титрования с соответствующими вычисленными значениями параметров, причем эта процедура должна быть выполнена после каждого очередного изменения параметров. Уточнение коррелируемых параметров часто приводит к таким кривым титрования, которые сильно отличаются от наилучшей вычисленной кривой при данной концентрации лиганда. Такая процедура указывает, при какой концентрации лиганда и/или длине волны необходимы дополнительные данные для лучшего определения системы. Подобный подход позволяет уменьшить коэффициенты корреляции, что улучшает сходимость итераций к минимуму. При сильной корреляции параметров поверхность параметров имеет форму пологого оврага, поэтому уменьшение коэффициентов корреляции улучшает ситуацию. [c.94]



Смотреть страницы где упоминается термин Вычисление коэффициентов нелинейной зависимости по методу наименьших квадратов: [c.346]   
Смотреть главы в:

Программирование и вычислительные методы в химии и химической технологии -> Вычисление коэффициентов нелинейной зависимости по методу наименьших квадратов




ПОИСК





Смотрите так же термины и статьи:

Вычисления Методы вычислений

Зависимости нелинейные

Коэффициент вычисление

Коэффициент зависимость

Метод вычисления



© 2025 chem21.info Реклама на сайте