Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообмен между слоем и поверхностью параметр

    Рабочую скорость прохождения газовой смеси выбирают исходя из анализа трех факторов гидродинамики, теплообмена между слоем и теплообменной поверхностью и массообмена между газом и зернами катализатора. Из гидродинамики следует, что рабочая скорость должна находиться в пределах йт критической скорости взвешивания до предельной, соответствующей уносу. Для расчета рабочей скорости обычно задаются или числом псевдоожижения = wlw или разностью Аг = гг — причем связь между этими параметрами можно выразить соотношением  [c.257]


    Таким образом, условие устойчивости стационарного состояния реактора с внутренним теплообменом с одинарными трубками означает, что параметрическая чувствительность среднеинтегральной разности температур между слоем катализатора и газом в трубках к температуре входа в слой была меньше некоторой величины, определяемой параметрами теплообменной поверхности и нагрузкой на аппарат. [c.229]

    Еще более сложным для исследования представляется теплообмен между поверхностью и перемащиваемой суспензией, поскольку в этом случае дополнительное влияние на процесс оказывает взвешенная в жидкости дисперсная твердая фаза. Чем больше разность плотностей частиц и жидкости, тем значительнее влияние частиц, проникающих в ламинарный слой жидкости у теплообменной поверхности. От содержания дисперсной фазы зависят плотность и вязкость суспензии, а следовательно, и характер циркуляционного движения в перемешиваемом объеме. Имеется несколько работ экспериментального характера [25, 26], в которых проведено обобщение данных в виде зависимости критерия Ми от многочисленных параметров системы. В такого рода корреляционных соотношениях помимо среднего объемного содержания дисперсной твердой фазы фигурируют теплофизические свойства суспензии (вязкость, тепло- и температуропроводность), надежное вычисление которых представляет дополнительную сложность. Поэтому степень достоверности рекомендуемых расчетных соотношений для теплоотдачи к перемешиваемым суспензиям зависит от метода вычисления теплофизических свойств суспензий [9]. Обычно по мере увеличения содержания твердой фазы интенсивность теплообмена суспензии с поверхностью стенки уменьшается, что, видимо, объясняется большим влиянием увеличивающейся плотности и вязкости суспензии на интенсивность циркуляционного движения по сравнению с интенсификацией теплообмена за счет возмущающего влияния твердых частиц на пристенную жидкость. Как правило, при стремлении концентрации твердой фазы к нулевому значению величина а стремится к коэффициенту теплоотдачи при перемешивании чистой жидкости. [c.125]

    Рассмотрим теплообмен между реагирующим пограничным слоем и испаряющейся (сублимирующейся) поверхностью твердого тела. За пределами пограничного слоя параметры газа — плотность смеси ро, ее тангенциальная скорость концентрации компонентов смеси [c.358]


    Из-за специфики теплообмена в шахтных печах, работающих в слоевом режиме, для которого характерно тесное взаимодействие теплопередачи всех видов, тепловой расчет печи занимает важнейшее место при определении ее параметров. Рассмотрим прежде всего закономерности теплопередачи в слое. Основной процесс теплообмена происходит здесь между фильтрующимся газом и активной частью поверхности твердого материала. С поверхности материала в глубь его тепло распространяется теплопроводностью. Кроме того, необходимо учитывать теплообмен лучеиспусканием между трехатомными газами стенкой и поверхностью материала. Эти процессы осложняются выделением тепла за счет экзотермичности процессов, а также изменения размеров и формы кусков материала, происходящего при его нагревании, и т. д. [c.265]

    Анализ поверхностных условий, интенсифицирующих теплообмен при кипении жидкостей, позволил выявить, как наиболее оптимальные для кипения хладоагентов, пористые металлические покрытия, полученные методами спекания с поверхностью порошков и металлизации. Экспериментальное исследование теплообмена на этих поверхностях при кипении в большом объеме широкого круга хладоагентов показало существенную интенсификацию теплообмена по сравнению с гладкими поверхностями. Интенсивность теплообмена при кипении зависит от способа нанесения покрытия, теплофизических свойств жидкости, режимных параметров (р, ДТ) и структурных показателей пористого слоя. При этом процесс теплообмена определяется условиями зарождения и роста пузырей за счет испарения тонкой пленки жидкости, заключенной между поверхностью пузыря и стенками капиллярных каналов, имеющих высокую теплопроводность, а также гидродинамическрши явлениями, вызванными этими процессами. Применение порисгых металлических покрытрй теплообменных поверхностей позволяет существенно интенсифицировать теплообмен при кипении жидкостей и улучшить массовые и габаритные показатели охлаждающих устройств. Лит. — 41 назв., ил. — 7. [c.212]

    Динамические характеристики. Из-за внешних воздействий и (или) изменений внутренних свойств катализатора и реактора в целом температурные и концентрационные поля в слое катализатора меняются во времени. При этом, как было показано, те параметры, влияние которых в стационарном режиме можно было не учитывать, часто оказываются существенными в нестационарном процессе. К таким параметрам можно отнести, например, дисперсию вещества вдоль слоя катализатора, массоемкость и теплоемкость слоя, неравподоступность наружной поверхности зерна, внешний тепло- и массообмен. В стационарном режиме значительное число факторов воздействует на состояние системы независимо и часто аддитивно. Это позволяет использовать более узкие модели и эффективные параметры, отражающие суммарное влияние этих факторов. В нестационарном режиме степень влияния этих же факторов может быть иной и, кроме того, сильно зависеть от состояния системы. Р1х влияние необходимо учитывать порознь. Так, например, дисперсию тепла вдоль адиабатически работающего слоя катализатора в стационарном режиме вполне достаточно представить коэффициентом эффективной продольной теплопроводности. В нестационарном режиме это недопустимо — необходимо учитывать раздельно перенос тепла по скелету катализатора, теплообмен между реакционной смесью и наружной поверхностью зерна и иногда перенос тепла внутри пористого зерна. Из-за инерционных свойств в нестационарном режиме имеют место большие, чем в стационарном, градиенты температур и концентраций на зерне и в слое катализатора. Это приводит, иапример, к отсутствию пропорциональной зависимости между температурой и степенью превращения, непродолжительному, но большому перегреву у поверхности зерна с наилучшими условиями обмена, значительным перегревам слоя — динамическим забросам, на-Л1Н0Г0 превышающим стационарные перепады температур между входом и выходом из слоя могут быть в несколько раз больше адиабатического разогрева при полной степени превращения. Сдвиг по фазе между температурными и концентрационными полями иногда приводит к возникновению колебательных пере- [c.13]

    Расчет интенсивности теплообмена при ламинарном движении пленки в роторном аппарате оказывается более громоздким и может быть проведен [29] в предположении о равномерной диссипации подводимой к ротору механической энергии в слое жидкости одинаковой толщины. Профиль температуры поперек ламинарной пленки находится из рещения задачи стационарной теплопроводности плоской стенки с равномерным внутренним тепловыделением— см. уравнение (2.39). Получаемое параболическое распределение температуры позволяет определить температуру на внещ-ней поверхности пленки. Теплообмен между ламинарной пленкой и валиком предполагается соответствующим пенетрационной теории массообмена в системах жидкость—жидкость [36]. Коэффициент теплоотдачи а оказывается зависящим от величины подводимой мощности, от величины теплового потока, а также от некоторых гидродинамических параметров, требующих предварительного определения. Методика расчета а при ламинарном режиме работы пленочных аппаратов оказывается громоздкой ее изложение приводится в работах [29, 37]. Предложенная модель проверена экспериментально и объясняет наличие экстремума а в зависимости от угловой скорости ротора. [c.136]


    Как и в случае многих других систем, справедливой оказывается аналогия Чилтона—Кольборна, по которой параметры /я и /о в основном идентичны при одинаковых геометрической форме слоя и условиях течения. Следовательно, данные по теплообмену в слоях частиц позволяют судить о коэффициенте при изучении массообмена. Взаимосвязь между трением жидкости и коэффициентами переноса установлена не полностью, хотя здесь и появились теоретические исследования [26, 48, 175]. Теоретический анализ процесса массообмена на поверхностях частиц в слое выполнен Пфеффером и Хэппелем [168]. [c.277]

    В различного рода массообменных аппаратах с тарелками, позволяющих пропускать газ пузырьками Или струями чербз слой жидкости, процесс диффузионного обмена происходит при разных условиях соприкосновения газа и жидкости. Независимо от конструкции тарелки пространство над ней можно разделить на три зоны. Нижняя зона — зона барботажа — представляет собой сплоншой слой жидкости, пронизанный пузырьками газа. Над ней находится зона пены, а еще выше — зона брызг. При малых скоростях газа, которые обычно поддерживаются в барботажных аппаратах, основная масса жидкости находится в зоне барботажа и количество пены и брызг невелико. Между тем, диффузия массы и теплообмен идут наиболее интенсивно именно в слое пены, обладающей большой межфазной поверхностью, непрерывно и быстро обновля1ющейся. Даже при малой высоте пенного слоя по сравнению с высотой зоны барботажа он имеет превалирующее значение. Следовательно, увеличением слоя пены за счет уменьшения слоя барботажа можно резко интенсифицировать процесс. Увеличение слоя пены может быть достигнуто повышением скорости газа в полном сечении агшарата Шг, являющейся наиболее влиятельным параметром [173, 231, 307], определяющим характер гидродинамического режима газожидкостного слоя (см., например, [223, 297, 348, 389]). , — [c.29]

    Уравнение энергии пограничного слоя внешне выглядит совершенно так же, как и уравнение количества движения пограничного слоя. Однако имеется два существенных отличия. В уравнении энергии (7-5) величины и и у должны рассматриваться как известные параметры, определяемые из решений уравнений движения. Соответственно уравнение энергии пограничного слоя есть линейное уравиение относительно температуры, что с математической точки зрения значительно упрощает задачу получения решений этого уравнения, поскольку здесь применим принцип суперпозиции. Это означает, что как только некоторое число решений этого уравнения становится известно, новые решения легко получить добавлением или вычитаннем любого из известных решений. Другое отличие между двумя уравнениями связано с тем фактом, что член, соответствующий градиенту давления, не содержится в уравнении энергии. Исходя из этого, можно предположить и это будет подтверждено позже, что влияние на теплообмен изменений давления вдоль поверхности меньше, чем на такие параметры потока, как лобовое сопротивление. [c.218]

    Теплообменные элементы 5 в виде плоских вертикальных стенок коробчатого сечения 180 X 10, длиной 152 мм и 20 X 4 длиной 77 мм, изготовленные из нержавеющей фольги толщиной 0,2 мм, подпаивались к толстым медным шинам, по которым от генератора постоянного тока 6 мог подаваться ток до 1500 а. Тепловая нагрузка излмерялась по параметрам электрического тока. Перепад температур между стенкой и жидкостью определялся при помощи дифференциальной медь-константановой термопары 9, горячий спай которой подклеивался к внутренней поверхности тонкой стенки рабочего элемента и фиксировал температуру стенки. Холодный спай по-дмещался в медный шарик диаметром 5 мм и на тонкой фарфоровой трубочке 10 опускался в газожидкостный слой. [c.122]


Смотреть страницы где упоминается термин Теплообмен между слоем и поверхностью параметр: [c.366]    [c.288]   
Основы техники псевдоожижения (1967) -- [ c.362 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхность теплообмена

Теплообменная поверхность



© 2025 chem21.info Реклама на сайте