Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимические свойства и пассивность титана

    В безводных спиртовых растворах, как и в ацетатных, титан не пассивируется. Для его пассивации в обоих типах растворов необходимо присутствие воды или других соединений, содержащих кислород с достаточно отрицательным эффективным зарядом. Например, ацетон замедляет скорость коррозии титана в метаноловых растворах хлороводорода, хотя и менее эффективно, чем вода [86]. Механизм коррозии во всех исследованных растворах электрохимический. Для H l-спиртовых растворов наблюдается закономерное уменьшение скорости коррозии с увеличением молекулярной массы спирта [1079]. Ионы и молекулы галоидов служат активаторами коррозии титана, непосредственно участвуя в процессе. Так, при коррозии титана в растворах брома в метаноле катодным процессом является ионизация брома, анодным — растворение титана [495]. Вода необходима для пассивации титана только в анодном процессе, способность титана к катодной пассивации не зависит от наличия воды [495, 603, 86]. Титан —металл с механической пассивностью, в водных растворах он само-пассивируется. Это его свойство сохраняется и в водно-спиртовых [c.115]


    Скорость растворения карбида титана в этой области значительно меньше скорости растворения титана в пассивной области. В то же время пассивирующая пленка на карбиде, по-видимому, не может иметь более высокие защитные свойства, чем на соответствующем металле, а) Так как электрохимически устойчивый в рассматриваемой области потенциалов углерод, остающийся в поверхностных слоях в результате перехода в раствор ионов титана, как будет показано ниже, затрудняет формирование совершенной пассивирующей пленки, увеличивает ее дефектность, б) Вероятность взаимодействия кислорода с атомами титана карбида, а также прочность этой связи должны быть значительно меньше, чем в случае взаимодействия кислорода с металлическим титаном, так как большая часть нелокализованных электронов титана в карбиде участвует в образовании прочной связи Т1—С 113, 14]. [c.71]

    При анодной поляризации в растворах H2SO4 концентрацией от 0,1 н. до 10,5 н. в широком диапазоне потенциалов от 2,5 В до 20 В образуется пленка TiOj, состоящая из анатаза с примесью рутила [106—109]. При повышении потенциала анодной поляризации относительное содержание анатаза увеличивается [105]. Защитная пассивная нленка на титане в растворах -H2SO4 состоит из сплошного барьерного слоя, прилегающего к металлу, и внешнего меиее сплошного слоя. Электрохимическое поведение пассивного титана определяется в основном толщиной и свойствами барьерного слоя. Внешний слой имеет структуру рутила, а барьерный слой при повьшенной температуре состоит из анатаза [105, 110]. Если барьерный слой формируется при более положительных потенциалах (в интервале от 0,14 до 1,4 В) [105], его защитные свойства улучшаются. [c.124]

    Анализ результатов показывает [140, 191], что первый участок на кривой зависимости скорость растворения — потенциал для карбида молибдена соответствует пассивному состоянию карбида, а второй — его перепассивации. В пассивной области скорость растворения карбида молибдена выше, а в области перепассивации — ниже скорости растворения молибдена (рис. 11 и 12). Высказано предположение [37, 191], что эти эффекты, усиливающиеся с увеличением содержания углерода в карбиде (рис. 12), обусловлены электрохимической устойчивостью углерода в исследованной области потенциалов. Благодаря этой устойчивости, углерод накапливается на поверхности карбида, способствуя образованию дефектной пассивирующей пленки в области пассивного состояния и выполняя функции барьерного слоя в области перепассивации, где скорости накопления углерода значительны. Ухудшение защитных свойств окисной пассивирующей пленки на карбиде по сравнению с соответствующим металлом подтверждается результатами, полученными на карбиде титана й титане (рис. 20, кривые 1 и 4 положительнее 1,2 в и [194]), а также на СгазСе и хроме (стр. 43) и, очевидно, позволяет сделать вывод об общем характере этого эффекта. [c.74]


    С точки зрения термодинамики титан является очень неустойчивым металлом (его нормальный потенциал равен —1,63 в), а высокая коррозионная устойчивость титана в большинстве химических сред объясняется образованием на его поверхности заш,итных окисных пленок, исключаюш их непосредственный контакт металла с электролитом. Вследствие этого было интересно исследовать электрохимическое и коррозионное поведение титана в условиях поляризации его переменным током различной частоты, когда в катодный полупериод тока может происходить частичное или полное разрушение пассивного состояния, а в анодный полупериод — его возникновение. Подобные исследования кроме чисто научного интереса представляют, несомненно, и определенную практическую ценность, поскольку титан и его сплавы начинают все шире внедряться в технику как новый конструкционный материал с особыми свойствами и разносторонняя характеристика его коррозионных свойств в различных условиях становится необходимой. Помимо этого, можно полагать, что изучение электрохимических и коррозионных процессов путем наложения на исследуемый электрод переменного тока различной частоты и амплитуды при дальнейшем совершенствовании может явиться наиболее подходяш,им методом для исследования скоростей электродных процессов, а следовательно, и методом изучения механизма электрохимической коррозии и пассивности металлов. Цель настояш,ей работы — выяснение основных факторов, определяющих скорость коррозии титана под действием переменного тока, а также установление механизма образования и разрушения пассивирующих слоев, возникающих на поверхности титана [c.83]

    В работах Коицуми и Вакаяма [73 98 99] установлено, что пассивная пленка на титане в растворах Н2504 состоит из сплошного слоя, прилегающего к металлу, и несплошного внешнего слоя. Подслой при комнатной температуре аморфен, а при более высокой имеет структуру анатаза. Несплошной внешний слой имеет структуру рутила. Электрохимическое поведение титана определяется главным образом толщиной и свойствами сплошного барьерного слоя оксида, прилегающего к металлу. [c.41]


Смотреть страницы где упоминается термин Электрохимические свойства и пассивность титана: [c.28]   
Смотреть главы в:

Коррозия и защита титана -> Электрохимические свойства и пассивность титана




ПОИСК





Смотрите так же термины и статьи:

Пассивность

Пассивность титана

Титан, свойства



© 2025 chem21.info Реклама на сайте