Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Торможения механизм коррозии

    В связи с преобладающим адсорбционным эффектом органических ингибиторов кислотной коррозии особое значение для понимания механизма их действия и для рационального подхода к созданию новых ингибиторов приобретает заряд поверхности корродирующего металла, т. е. его ф-потенциал. Применение приведенной шкалы потенциалов иозволяет использовать данные электрокапиллярных измерений на ртути в растворах, содержащих органические соединения, для оценки их эффективности в качестве ингибиторов при кислотной коррозии железа и других металлов. Значение ф-потенциала корродирующего металла иозволяет не только предсказать, какие вещества могут быть ингибиторами, но и рассчитать коэффициенты торможения. Л. И. Антропов в разработанной им формальной теории ингибиторов показал, что наблюдаемый в области малых и средних заполнений коэффициент ингибирования у представляет собой произведение ряда частных коэффициентов ингибирования  [c.508]


    Ступень процесса, имеющую наибольщую долю контроля (т. е. оказывающую максимальное торможение), называют контролирующим, или ограничивающим, фактором коррозии. Для уменьшения скорости коррозии более эффективно воздействие на контролирующий фактор. Изучить процесс коррозии — это значит прежде всего установить контролирующий фактор коррозии и вскрыть механизм его протекания. Только при этом условии можно выбрать наиболее действенный путь борьбы с коррозией и оценить коррозионную стойкость какого-либо металла или сплава в той или иной агрессивной среде. [c.464]

    Как видно, во всех рассмотренных механизмах коррозии предполагается стадия образования адсорбционной гидроксильной пленки. Стабилизация этой плевки или торможение ее образования достигается ингибиторами — веществами, не участвующими в реакции, но ее тормозящими. Этим объясняется чувствительность скорости коррозии к отдельным веществам, присутствующим даже в весьма малых концентрациях. [c.235]

    Если в состав защитной пленки с низкой адгезией к металлу включен водорастворимый ингибитор коррозии или если сам электролит, проникающий через пленку смазочного материала содержит водо- или водомаслорастворимые ингибиторы, то торможение электрохимической коррозии будет проходить по детально изученным механизмам ингибирования в водных средах в результате торможения анодной и (или) катодной реакции коррозионного процесса. [c.80]

    Для электрохимического механизма коррозии следует более детализировать контролирующий фактор, относя его раздельно к катодным и анодным реакциям. Процесс электрохимической коррозии представляет собой замкнутый цикл из отдельных более простых последовательно (а частично также параллельно) соединенных ступеней 7]. Поэтому установление реальной скорости коррозионного процесса находится в прямой зависимости от суммарного его торможения на каждой из этих более простых элементарных ступеней. [c.40]

    Аналогичные представления применимы не только к разбору механизма торможения электрохимической коррозии металлов, но н к более общим случаям протекания химических гетерогенных реакций. [c.6]

    В качестве ингибиторов кислотной коррозии применяются почти исключительно органические вещества, содержащие азот, серу или кислород в виде амино-, имино-, тиогрупп, а также в виде карбоксильных, карбонильных и некоторых других групп. Согласно наиболее распространенному мнению действие ингибиторов кислотной коррозии связано с их адсорбцией на границе раздела металл — кислота. В результате адсорбции ингибиторов наблюдается торможение катодного и анодного процессов, что снижает скорость коррозии. В связи с преобладающим адсорбционным эффектом органических ингибиторов кислотной коррозии особое значение для понимания механизма их действия и для рационального подхода к созданию новых ингибиторов приобретает величина заряда поверхности корродирующего металла, т. е. величина его ф-потенциала. Применение ф-шкалы потенциалов позволяет использовать данные электрокапиллярных измерений на ртути в растворах, содержащих органические соединения, для оценки их эффективности в качестве ингибиторов при кислотной коррозии железа и других металлов. Значение ф-потенциала корродирующего металла позволяет не только предсказать, какие вещества могут быть ингибиторами, но и рассчитывать коэффициенты торможения. Экспериментальные значения коэффициентов торможения кислотной коррозии железа в присутствии различных количеств диэтиламина, сопоставленные с расчетной прямой, приведены на рис. 103. Расчетная прямая вычерчена по уравнению [c.482]


    Наконец, может происходить растворение компонентов защитных присадок в воде и торможение коррозии металлов в электролитах по электрохимическому механизму. В этом случае компоненты присадок будут выступать в роли водорастворимых ингибиторов коррозии. По этому механизму действуют многие ингибиторы атмосферной коррозии металлов. [c.293]

    Исходя из электрохимического механизма коррозии, согласно которому коррозионный процесс является следствием 2 сопряженных реакций — анодной (собственно растворения металла) и катодной (ассимиляции электронов деполяризатором), можно представить следующие возможные пути торможения коррозионного процесса ингибиторами 1) увеличение поляризуемости катодного парциального процесса <катодиые ингибиторы) 2) увеличение поляризуемости анодного парциального процесса (анодные ингибиторы) 3) увеличение поляризуемости обоих электродных процессов (смешанные ингибиторы). [c.19]

    Механизм торможения процесса коррозии [c.57]

    Изучение конкретных процессов коррозии и орг а-низация коррозионной службы химического завода. Глубокое изучение практических случаев коррозии химической аппаратуры и научный подход к разработке рекомендаций рациональных методов защиты должны с полным правом рассматриваться в качестве основного звена возможных мероприятий по борьбе с коррозией в химической промышленности. Как это детально разобрано в теоретическом введении к этой статье, для каждого нового случая коррозии выбор правильного мероприятия по борьбе с нею возможен только при знании, механизма коррозии. В частности, совершенно необходимо для рассматриваемого коррозионного процесса знать характер и степень торможения катодного и анодного процессов, значение омического-сопротивления среды, роль кислорода и окислителей, значение pH раствора, пассивируемость данной коррозионной системы, влияние  [c.230]

    Можно привести следующие доводы в пользу предположения о преимущественном протекании коррозионных процессов в большинстве практических случаев по гетерогенно-электрохимическому механизму. В большинстве случаев коррозии в нейтральных средах образуются нерастворимые продукты коррозии. Если бы в этих условиях катодные и анодные процессы происходили в одном и том же месте, то это приводило бы к осаждению продуктов коррозии на всей поверхности металла и к быстрому торможению процесса коррозии, чего по большей части, однако, не наблюдается. Например, известно, что железо, сталь и чугун в морской воде и в растворах хлоридов корродируют почти с постоянной скоростью во времени. [c.149]

    Механизм торможения коррозии ингибиторами изучали, предполагая, что при блокировочном, энергетическом и смешанном эффектах наблюдаются линейные зависимости Z, igy и lg[y(l — 0)] от 0 соответственно (табл. 45). [c.301]

    Метод меченых атомов не только позволяет определять токи обмена, но дает возможность измерять скорость осаждения металла при пропускании тока даже при обратном процессе коррозии, протекающем с достаточной скоростью. Таким образом, удалось выяснить механизм торможения коррозии цинка наложенным извне током. С помощью меченых атомов были сняты полные поляризационные диаграммы, что позволяет определять коэффициенты наклона катодной и анодной ветви при одном и том же потенциале (например, при равновесном потенциале). По вычисляемым отсюда коэффициентам переноса аир судят о механизме процесса. [c.323]

    Иногда химическая коррозия протекает медленнее, чем это должно следовать из диффузионного механизма торможения, [c.106]

    Вещества, способные создавать на поверхности корродирующего металла защитные оксидные пленки с участием его ионов. Следует различить прямое окисление поверхности металла добавкой, что, по-видимому, наблюдается крайне редко, и торможение анодной реакции со смещением потенциала до значения, при котором возможны разряд молекул воды или ионов гидроксида и адсорбция на металле образующихся атомов кислорода. Хемосорбировэнные атомы кислорода замедляют процесс коррозии как по каталитическому механизму (блокировка наиболее активных центров), так и по электрохимическому (создание соответствующего добавочного скачка потенциала). Количество кислорода на поверхности возрастает и создает сплошной моноатомный слой, который практически не отличим от поверхностного оксида. Оксид может образовываться и в результате окисления добавкой ионов металла, уже перешедших в раствор, до ионов более высокой валентности (например Ре до Ре ), способных образовывать с гидроксильными ионами менее растворимую защитную пленку. К таким веществам можно отнести большинство неорганических окислителей, потенциал которых выше равновесного потенциала системы Ре /Ре . [c.53]


    При температурах, соответствующих правой ветви, коррозия протекает по электрохимическому механизму. При этом на поверхности металла появляется пленка электролита, содержащая растворенный газ и обладающая высокой агрессивностью. По мере увеличения температуры в этой области затрудняется сорбция влаги, что является причиной постепенного торможения скорости коррозии. Поскольку сорбционная способность хлоридов металлов зависит от их природы, то каждый металл характеризуется нижней критической температурой (при определенной влажности газа) или критической влажностью при определенной температуре, вьше и ниже которых соответственно скорость коррозии не превьшает допустимые пределы. [c.101]

    Механизм газовой коррозии связан с протеканием на поверхности раздела твердой и газообразной фаз двух сопряженных реакций окисления металла и восстановления газообр 13ного окислителя, причем в пространстве эти два процесса, как правило, не разделены. В этом же месте происходит и накопление продуктов реакции окисления. Для непрерывного осуществления реакции атомы и ионы металла, с одной стороны, и атомы или ионы кислорода или другого окислителя, с другой, диффундируют сквозь постепенно утолщающуюся пленку продуктов коррозии. В результате газовой коррозии на поверхности металла образуются соответствующие соединения оксиды, сульфиды и др. В зависимости от свойств образующихся продуктов может происходить торможение процесса окисления. [c.686]

    Установленный нами для ряда классов соединений параллелизм между ингибирующим наводороживание стальных катодов действием органических веществ и торможением ими коррозии стали, идущей с водородной деполяризацией, является далеко не случайным, а имеет в своей основе общий механизм, заключающийся в образовании на поверхности стали адсорбционного слоя молекул ингибитора, изолирующего поверхность катода от источников атомарного водорода, какими являются ионы НзО+ (кислая среда) и молекулы НгО (нейтральная и щелочная среда при очень больших Дк). Р азряд этих частиц осуществляется, по-видимому, на поверхности образовавшегося адсорбционного слоя молекул ингибитора электронами, вылетающими из металла. Образующиеся атомы водорода лишены возможности ад- [c.251]

    Исходя из такого механизма коррозии весовые потери стали ЭИ811 определяются в значительной степени растворимостью б-феррита. Уменьшение коррозии при повышении температуры закалки объясняется уменьшением содержания в стали б-феррита (табл. 2), что приводит к торможению анодного процесса растворения б-феррита. [c.79]

    Механизм сухой атмосферной коррозии металлов аналогичен химическому процессу образования и роста на металлах пленок продуктов коррозии, описанному в ч. I. Процесс сухой атмосферной коррозии металлов сначала протекает быстро, но с большим торможением во времени так, что через некоторое время, порядка нес <ольких или десятков минут, устанавливается практически постоянная и очень незначительная скорость (рис. 263), что обусловлено невысокими температурами атмосферного воздуха. Так образуются на металлах в кислороде или сухом воздухе тонкие окисные пленки, и поверхность металлов тускнеет. Если в воздухе содержатся другие газы, например сернистые соединения, защитные свойства пленки образующихся продуктов коррозии могут снизиться, а скорость коррозии в связи с этим несколько возрасти. Однако, как правило, сухая атмосферная коррозия не приводит к существенному коррозионному разрушению металлических конструкций. [c.373]

    Приведем другой пример. В последнее время широко обсуждается механизм торможения кислотной коррозии железа смесями солей органических оснований в присутствии галоид-ионов38. 39.67 3 д Иофа , В. В. Лосев и др. предполагают, что первичным процессом является взаимодействие поверхности металла с ионами галоида. В результате этого взаимодействия заряд поверхности металла изменяется (увеличивается значение отрицательного потенциала металла) таким образом, что на поверхности становится возможной адсорбция органических катионов, например ионов тетрабутилизоамиламмония. [c.64]

    Водорастворимые ингибиторы коррозии (группы I—П1) делятся на неорганические (группа I) органические — неполноценные ПАВ (группа И) органические — полноценные ПАВ (группа П1). По химическому строению органические ингибиторы коррозии делятся на анионоактивные (алкилоламиды, алкилбензолсульфона-ты, алкилсульфаты, мыла жирных кислот, соли нитробензойных кислот и пр.), катионоактивные (ацетаты первичных аминов, ал-килбензиламмонийхлориды и пр.) и неионогенные (продукты окси-этилирования или оксипропилирования алкилфенолов, жирных кислот, аминов и пр.). По механизму воздействия на электрохимическую коррозию водорастворимые ингибиторы можно разделить на анодные, увеличивающие поляризуемость анода (пассиваторы) катодные, увеличивающие поляризуемость катода смешанные, увеличивающие поляризуемость обоих электродов и выступающие в качестве пассиваторов. Кроме того, катодные водорастворимые ингибиторы могут уменьшать окислительно-восстановительный потенциал системы, т. е. замедлять катодную реакцию. Однако общее торможение электрохимической коррозии может наступить в результате увеличения окислительно-восстановительного потенциала системы, т. е. ускорения катодной реакции до такой степени, при которой становится возможна пассивация металла [120]. По последнему механизму могут работать нитроароматические легко-восстанавливающиеся соединения, также являющиеся пассивато-рами. [c.129]

    Если построить кривую коррозия-время, характеризующую растворение цинка в серной кислоте (рис. 61), то она будег иметь вид, соверщенно отличный от подобных кинетических кривых для рассмотренных случаев химической коррозии. В случае химической коррозии при образовании пленок без защитных свойств при полном отсутствии защитных пленок (например, при образовании летучих продуктов газовой коррозии) график имеет прямолинейный характер, а во всех остальных случаях будет иметь место параболическая или логарифмическая кривая с выпуклостью, обращенной кверху, что указывает на торможение коррозии во времени. В данном же случае кривая указывает на сильное увеличение скорости коррозии по проществии некоторого отрезка времени (так называемого инкубационното периода коррозии). Явление инкубацио<н ного периода нельзя достаточно убедительно объяснить с точки зрения чисто химического механизма коррозии. [c.122]

    Первое направление — создание путем подходящего легирования более совершенного экранирующего слоя продуктов коррозии, дающего юбщее повышение коррозионной устойчивости сплава,— имеет сравнительно ограниченные возможности для повышения устойчивости против электрохимической коррозии. Причина этого, по-видимому, заключается в том, что достаточно полного экранирования при электрохимической коррозии в электролитах продукты коррозии, как правило, дать не могут, так как образование этих продуктов (при гетерогенно-электрохимическом механизме коррозии) будет происходить не непосредственно на анодных поверхностях, а в растворе между анодными и катодными участками. Можно ожидать заметно большей зашиты в результате уплотнения вторичных продуктов коррозии и образования защитных слоев в условиях протекания коррозионного процесса в атмосферных условиях. В качестве конкретного примера можно указать на повышение коррозионной устойчивости меди при ее легировании цинком или алюминием, т. е. на повышенную коррозионную устойчивость латуней и алюминиевых бронз по сравнению с чистой медью. Повышенная устойчивость медистых сталей по сравнению с обычными конструкционными сталями должна в некоторой мере объясняться также уплотнением продуктов коррозии, хотя в данном случае, помимо этого фактора, как будет разобрано ниже, значительную роль играет анодное торможение. Однако для повышения устойчивости сплава по отношению к химической коррозии и, в частности, к имеющей такое большое значение в технике газовой высокотемпературной коррозии этот путь будет являться основным. [c.438]

    Механизм действия значительного числа ингибиторов заключается в адсорбции ингибитора на корродирующей поверхности и последующем торможении катодных или анодных процессов. К анодным замедлителям нужно отнести замедлители окисляющего действия, например нитрит натрия ЫаЫОг, бихромат натрия ЫааСггО,. Воздействие анодных окислителей на анодный процесс может привести к установлению пассивности, следовательно, к замедлению коррозии металла. [c.222]

    Уменьщение коррозии металлов при введении в коррозионную среду замедлителя может призойти вследствие торможения анодного процесса (анодные замедлители), торможения катодного процесса (катодные замедлители) и торможения обоих процессов (сиещанные замедлители). Один из методов изучения механизма действия замедлителей коррозии — построение поляризационных кривых. [c.310]

    Механизм действия ингибиторов коррозии сводится к следующим последовательно протекающим процессам вытеснению воды (электролита) с поверхности металла удерживанию воды в объеме нефтепродукта образованию на поверхности металла адсорб-ционно-хемосорбцио нных слоев ингибитора коррозии, гидрофоби-зирующих поверхность и препятствующих контакту электролита с металлом торможению анодного и катодного коррозионных процессов разрушения металла образовавшейся защитной пленкой ингибитора коррозии. [c.306]

    Для защиты от коррозии широко используют ингибиторы — вещества, снижающие скорости анодного растворения металла, выделения водорода или скорости обоих этих процессов. Механизм действия ингибиторов показан на рис. 95. В соответствии с тем, скорости каких процессов — анодного, катодного или обоих — замедляются, ингибиторы подразделяют на анодные, катодные и ингибиторы смешанного типа. Анодные ингибиторы смещают стационарный потенциал в анодную, а катодные — в катодную сторону. Ингибиторы смешанного типа могут смещать Е в анодную или катодную сторону или не изменять его в зависимости от степени торможения соответствующих процессов. Ингибиторы смешанного типа оказываются наиболее эффективными. В качестве ингибиторов кислотной коррозии применяют разнообразные органические вещества, молекулы которых содержат амино-, ИМИНО-, тио- и другие группы. Необходимым условием ингибирующего действия этих веществ является их адсорбция на по-нерхности металла. [c.214]

    Большая часть распространенных в промышленности ингибиторов сероводородной коррозии представляет собой органические азотсодержащие соединения, в частности амины и их производные. Механизм защитного действия, предложенный И. Л. Розенфельдом и являющийся в настоящее время общепринятым, заключается в следующем. Адсорбирующиеся на поверхности металла ионы Н8 образуют диполи, отрицательно заряженные концы которых обращены в сторону коррозионной среды и способствуют адсорбции ингибиторов катионного типа. При этом изменяется строение двойного электрического слоя на границах металл-коррозионная среда и возникает дополнительный положительный скачок электродного потенциала, приводящий к замедлению катодной реакции путем торможения перехода катионов металла из кристаллической решетки в коррозионную среду. Анодная реакция замедляется в результате блокирования образующихся на поверхности каталитических комплексов (РеН8)адс адсорбированными катионами ингибитора. Кроме того, в ингибированных сероводородсодержащих средах образуется [c.327]

    Для понимания механизма ингибиторного действия по отношению к кислотной коррозии нашел применение электрохимический метод, основанный на данных поляризационных измерений. Введение ингибитора в раствор может привести к задержке скорости катодного процесса разряда ионов водорода на поверхности металла. В случае введения другого ингибитора торможению подвергается анодная стадия ионизации.металла. Очень часто действие ингибитора одновременно направляется на обе стадии коррозионного процесса. Все эти изменения находят отражение на поляризационных кривых, наклон которых становится тем более крутым, чем выше эффективность действия ингибитора (рис. 142). Пунктиром на этом рисунке показаны кривые катодной и гиюдной поляризации в полулогарифмических координатах ля чистого иеингибированного раствора кислоты. Экстраполирован-пап точка пересечения начальных линейных отрезков этих кривых соответствует скорости саморастворения металла в таком растворе (на рис. 141 эт а величина обозначается г ). Ей соответствует стационарный потенциал коррозии Е . Сплошными линиями на рисунке показаны поляризационные кривые, относящиеся к ингибированному раствору. Абсцисса точки пересечения обеих кривых помтрежнему определяет скорость саморастворения металла с, но на этот раз в присутствии ингибитора в растворе. [c.260]

    Увлажнение атмосферы сопровождается изменением механизма коррозионного процесса. Слой влаги, обычно зафязненный присутствующими в воздухе химическими соединениями, является электролитом. Однако в присутствии тонкого слоя электролита атмосферная коррозия металлов отличается от коррозии металлов, полностью погруженных в электролит. Во-первых, в воздушной среде процессы коррозии протекают всегда с кислородной деполяризацией, т.к. тонкий слой электролита совершенно не препятствует диффузии кислорода воздуха к поверхности металла. Во-вторых, наличие кис.торода способствует переходу металла в пассивное состояние, т.е. торможению анодного процесса. [c.63]

    Высокая термическая устойчивость позволяет использовать цинкфосфонатные композиции в охлаждающих системах, не опасаясь образования фосфатного шлама. Показано, что комплексонаты цинка являются ингибиторами смешанного действия с преимущественным торможением катодного процесса, кинетика которого мало зависит от присутствия 1 . Механизм защитного действия цинкфосфонатов объясняется образованием смешанных труднорастворимых комплексных соединений цинка и железа с ОЭДФ и частичным осаждением Zn(0H)2 на поверхности металла. Комплексонаты цинка ингибируют коррозию черных металлов, латуни, алюминия и его сплавов [880, 881], оказывают защитное действие на цинк и оцинкованную сталь в воде с высокой коррозионной активностью. Защитный эффект снижается при наличии в воде железа и продуктов коррозии на поверхности металла [859]. [c.470]

    Принцип действия. Поскольку коррозия мегшшов под действием внешних факторов имеет, главным образом, электрохимическую природу, то механизм действия защитных присадок сводится к следующим процессам торможению анодного и катодного коррозионных хфоцессов разрушения металлов, вытеснению воды (электролита) с поверхности металла и удержанию воды в объеме нефтепрод таа. Предотврашть коррозию можно также путем формирования на поверхности металла защитного слоя, препятствующего контакту воды и кислорода с металлом и изменяющего его электрохимический потенциал. [c.954]

    Полученные результаты позволяют достаточно обоснованно судить о механизмах действия соединений АОД, ДОД, ДИ, АОФ, МД, КБ, 01 и 02 в условиях коррозии под напряжением стали 17Г1С. Их высокие защитные свойства обусловлены способностью к образованию на поверхности эластичных адсорбционных пленок, хорошо выдерживающих воздействие на металл статических, динамических и циютических нагрузок. Торможение наводовоживания происходит также вследствие изменения лимитирующей стадии катодного выделения водорода при адсорбции ряда соединений на активных участках поверхности. [c.165]


Смотреть страницы где упоминается термин Торможения механизм коррозии: [c.266]    [c.181]    [c.541]    [c.266]    [c.178]    [c.506]    [c.304]    [c.171]    [c.186]    [c.70]    [c.449]    [c.110]    [c.152]   
Ингибиторы коррозии металлов в кислых средах (1986) -- [ c.34 , c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Торможение



© 2025 chem21.info Реклама на сайте