Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование положительных ион-радикалов при облучении

    Заметное влияние типа излучений на выход разложения воды по энергии, вероятно, зависит от степени разделения возникших Н- и ОН-радикалов, образовавшихся в треке ионизирующего луча, или от аномального распределения Н- и ОН-радикалов [86, 94]. Например, предполагается, что положительные ионы, возникшие по каждому следу а-частицы, протона или дейтона, быстро диссоциируют на Н" и радикал ОН, тогда как электрон, появившийся от первичного процесса, захватывается только на некотором расстоянии от этого пути. Вследствие этого создается избыток ОН-радикалов вдоль центра пути и избыток Н-радикалов в зоне, окружающей этот центр. Это увеличивает вероятность рекомбинации двух гидроксильных радикалов с образованием перекиси водорода и двух Н-атомов в молекулу водорода. При облучении рентгеновскими, у- или -лучами логично предполагать, что ОН- и Н-радикалы образуются в значительно меньшей концентрации и распределены более равномерно, что увеличивает вероятность их рекомбинации с образованием исходной воды. Аллен [96] показал, что потеря энергии быстрыми электронами, проходящими через воду, происходит внезапными толчками, что приводит к образованию скоплений пар ионов вдоль пути этих электронов, что также должно влиять на распределение ОН- и Н-радикалов. У нас очень мало сведений об относительных выходах по энергии в водяном паре по сравнению с выходами в жидкой воде. Однако близость между молекулами воды и наличие водородных связей в жидком состоянии, как можно предполагать, обусловливают значительные различия в механизмах реакций в обеих фазах. [c.62]


    Потеря электрона с образованием катион-радикала требует сравнительно больших энергетических затрат. В работе при электрохимическом окислении фуллеренов были обнаружены положительно заряженные частицы, образование которых сопровождалось протеканием чисто химических процессов. При этом электрохимический процесс окисления частично был необратим. Окисление сопровождается образованием эпоксида, но при этом структура молекулы фуллерена не разрушается. Под воздействием УФ-облучения количество СбоОп (1<п<5) в растворе возрастает с течением времени и достигает 1-10%, однако СбоО легко превращается в С о на поверхности АЬОз- [c.139]

    В углеводородах накопление стабилизированных электронов замедляется также вследствие образования в процессе облучения нового типа ловушек — свободных радикалов. Свободные радикалы, обладая положительным сродством к электрону , могут захватывать медленные электроны при радиолизе [125]. Специфика радикалов как акцепторов состоит в том, что их концентрация возрастает с дозой излучения, если облучение проводится при достаточно низкой температуре. Заметим, что радикал, захвативший электрон (К ), лвляется непарамагнитной частицей. [c.106]

    Масс-спектрометрия. Этот метод анализа включает облучение исследуемого вещества пучком электронов, в результате чего происходит фрагментация молекулы и образование положительно заряженных ионов. Полученные фрагменты разделяются в соответствии с отношением молекулярная масса/заряд. В результате получают масс-спектр, дающий информацию об относительных концентрациях осколков с разной массой. В простейшем случае при бомбордировке электронами молекула может терять один электрон, в результате чего образуется молекулярный ион, представляющий собой катион-радикал с той же массой, что и исходная молекула. Во многих случаях молекулярные ионы настолько нестабильны, что распадаются с образованием осколочных ионов, прежде чем их удается зарегистрировать. Масс-спектрометрия дает возможность проводить идентификацию химических соединений. В окислительных системах, характеризующихся весьма сложным составом, предпочтительно перед масс-спектроскопическим определением осуществлять разделение присутствующих компонентов с помощью газожидкостной хроматографии (метод хроматомасс-спектрометрии). Данные о происхождении ионных фрагментов, представляющих интерес для идентификации продуктов окисления олефинов, приведены ниже  [c.207]


    По-видимому, наблюдаемые изменения спектра ЭПР под действием видимого света можно объяснить тем, что первоначально в полимерах при 77 К наряду с радикалами стабилизируются другие парамагнитные частицы. Вероятно, такими частицами являются анион-радикалы, которые представляют собой электроны, захваченные полярными группами полимера или какими-нибудь дефектами матрицы. На это указывает зависимость наблюдаемого эффекта от наличия или отсутствия полярных групп в полимерах. Исчезновение анион-радикала может произойти при облучении видимым светом в результате отрыва электрона от акцептора и его последуюш ей рекомбинации с положительным ионом, что приведет либо к испусканию кванта света, т. е. к фоторадиолюминесценции по реакции -f- е М Av, либо к образованию свободных радикалов [c.216]


Смотреть страницы где упоминается термин Образование положительных ион-радикалов при облучении: [c.117]   
Смотреть главы в:

Анионная полимеризация -> Образование положительных ион-радикалов при облучении




ПОИСК





Смотрите так же термины и статьи:

облучение

облучение образование



© 2024 chem21.info Реклама на сайте