Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биокомплексы металлов

    Какие соединения относятся к биокомплексам металлов и в чем заключаются особенности их строения  [c.200]

    Какую роль выполняют биокомплексы металлов в живых организмах  [c.303]

    Биокомплексы металлов — координационные соединения биолигандов с ионами металлов. [c.548]

    Для /-металлов наиболее характерно образование координационных соединений с разнообразными, в том числе и биогенными, лигандами, что в основном и определяет их биологическую активность. Наличие /-орбиталей, лишь частично заполненных электронами, позволяет катионам этих металлов взаимодействовать с лигандами — анионами или электродонорными молекулами. Геометрия образующихся комплексов МЬ зависит от природы иона металла-комплексообразователя. Комплекс может иметь структуру тетраэдра, плоского квадрата, тригональной бипирамиды или октаэдра. При анализе структуры, физико-химических и биохимических свойств этих комплексов особое внимание обращается на природу связи М—Г и на геометрию комплекса МГ . В координационных соединениях ионы /-металлов способны образовывать кроме а-связей прямые и обратные дативные л-связи. Это обусловливает высокую комплексообразующую способность и непостоянство координационных чисел /-металлов. Как правило, в биокомплексах это четные координационные числа от 4 до 8, реже 10 и 12. [c.191]


    Биологические функции биометаллов и их координационных соединений с биолигандами, другими словами, роль их в живых организмах давно интенсивно изучаются. И тем не менее на сегодня механизмы биологического действия ионов щелочных и щелочноземельных металлов окончательно не выяснены. Одной из важнейших проблем является распределение Ка+ и К+ между внутриклеточным и внеклеточным пространством. Наблюдается избыток во внеклеточном пространстве, К+ — во внутриклеточном. Эти ионы ответственны за передачу нервных импульсов. Мо2+ изменяет структуру РНК Са + играет особую роль в процессах сокращения и расслабления мышц. Ионы железа, меди н ванадия в биокомплексах присоединяют молекулярный кислород и выполняют, таким образом, функцию накопления, хранения и транспорта молекулярного кислорода, необходимого для реализации многих процессов с выделением энергии, а также для синтеза ряда веществ в организме. [c.568]

    По функциональной роли в организме биокомплексы металлов в первом приближении могут быть классифицированы как транспортные вещ,ества, аккумуляторы, активаторы инертных молекул и биокатализаторы [364]. Комплексоны и образуемые ими комплексонаты могут разрушать комплексы биолигандов с катионами, достраивать их с образованием смешанно лигандных комплексных соединений, а также в отдельных случаях самостоятельно выполнять функции, присущ,ие биокомплексам естественного происхождения. Так, в природе хорошо известны лиганды-сидерохромы, выполняющ,ие транспортные функции при переносе ионов железа из внешней среды внутрь клетки. Оказалось, что подобные транспортные функции могут успешно выполнять комплексоны, в частности ЭДТА, ДТПА, ОЭДФ [936]. Другим интересным свойством комплексонов является их способность имитировать функции некоторых ферментов. В частности, система, включающ,ая железо(II), пероксид водорода и двухэлектронный восстановитель, например аскорбино- [c.492]

    Биокомплексы металлов — это координационные соединения, выполняющие в организме определенные биохимические функции, в соответствии с которыми их условно можно подразделить на транспортные (ионо-форы) и аккумуляторные формы (накопители), а также активаторышиерт-ных молекул или биокатализаторов. [c.174]

    Можно утверждать, что в биосистемах свободных ионов /-металлов практически нет, так как они или гидролизуются, или находятся в составе координационных соединений. Чаще всего /-элементы участвуют в биохимических реакциях в составе комплексов с лигандами — аминокислотами, пептидами, белками, гормонами, нуклеиновыми кислотами и т. д. Наиболее распространенные металлоферменты, такие, как карбоангидраза, ксантинооксидаза, цитохромы и др., представляют собой биокомплексы /-металлов. Простетические группы гемоглобина, трансферрина и других сложных белков также представляют собой хелатные комплексы /-металлов (см. главу 5). [c.191]


    Цинк. В биологических средах устойчивы комплексы цинка, которые он образует с аминокислотами, пептидами и белками, нуклеотидами за счет взаимодействия с фрагментами биомолекул, содержащими в качестве электронодонорных атомов серу, кислород и азот. В цинкзависи-мых ферментах и цинксодержащих биокомплексах ион металла не участвует в окислительно-восстановительных процессах за счет переноса электронов. [c.194]

    Плоскоквадратные комплексы. Плоскоквадратные комплексы стерически менее предпочтительны, чем тетраэдрические комплексы, и они не образуются при участии больших лигандов. Если же лиганды достаточно малы, то вместо плоскоквадратного комплекса часто образуется октаэдрический комплекс (КЧ = 6). Плоскоквадратные комплексы дают немногие ионы металлов. Из них наиболее характерными являются ионы с конфигурацией например ЫР+, Р(]2+, и Аи + (см.разд. 10.2), а также ион Со + с конфигурацией который образует плоскоквадратные комплексы с бидентатными лигандами. Хлорофилл и другие биокомплексы представляют важное исключение из этого правила, но их геометрическая форма определяется в основном жестким строением порфирина (см. разд. 18). [c.323]

    Для решения задач неорганической биохимии необходимо знание электронного строения природных комплексов, включающих биометаллы (от одного до нескольких атомов) и соответствующее окружение (ближайшие и более удаленные атомы). В книге рассмотрена электронная структура природных комплексов, содержащих в своем составе железо (гл. 3). К сожалению, этого не сделано по отношению к биокомплексам других жизненно важных металлов. [c.5]


Смотреть страницы где упоминается термин Биокомплексы металлов: [c.174]    [c.493]   
Смотреть главы в:

Химические основы жизни -> Биокомплексы металлов




ПОИСК







© 2024 chem21.info Реклама на сайте