Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние природы и состояния ионов металла

    В большинстве случаев при совместном осаждении металлов скорости электрохимических реакций существенно отличаются от скоростей раздельного восстановления ионов. В реальных условиях электроосаждения сплавов необходимо учитывать, кроме указанных выше факторов, влияние изменения природы, состояния и величины поверхности электрода, на которой протекает реакция, строения двойного электрического слоя, состояния ионов в растворе, влияние энергии взаимодействия компонентов при образовании сплава и др. В зависимости от характера и степени влияния этих факторов, скорости восстановления ионов при совместном выделении металлов на катоде могут отклоняться в ту и другую стороны от скоростей раздельного их осаждения. [c.433]


    Для данной пары ионы металла — ионит коэффициенты внутренней диффузии зависят от состояния ионов металла и его концентрации в растворе, природы и концентрации в нем других ионов, из которых особое влияние на кинетику процесса оказывают ионы и соединения, [c.97]

    Полимерная природа и трехмерная структура комплексита обусловливают специфическое влияние состава раствора на его сорбционные свойства и селективность сорбции ионов переходных металлов. Состав раствора (природа и концентрация всех его компонентов) определяет не только состояние ионов металла и функциональных грунн комплексита, но и их основность, степень набухания полимера, возможность протекания наряду с комплексообразованием других процессов. Поэтому природа и концентрация компонентов раствора влияют на энергию координационной связи Ь- М и энергетические затраты системы на комплексообразование в фазе ионита, т. е. на константу равновесия реакции комплексообразования (I) Кр. Наряду с этим изменение концентрации участвующих в комплексообразовании компонентов системы смещает равновесие реакции (I) и влияет на степень закомплексованности ионов металла ионитом, а также на возможность осуществления в фазе комплексита наряду с комплексообразованием других процессов (образования осадков основных солей и гидроксидов, ионного обмена, доннановского распределения). В целом сорбция катионов переходных металлов комплекситами происходит в результате указанных [c.203]

    ВЛИЯНИЕ ПРИРОДЫ и СОСТОЯНИЯ ионов МЕТАЛЛА [c.214]

    Классификация по электронной конфигурации рассматривае мого иона или атома металла. В соответствии с этой классификацией все комплексы металлов делятся на четыре категории. Категория I. Эта категория включает ионы металла, которые б своих комплексах имеют конфигурацию инертного газа, т. е. Ь или пз пр (где п равно 2, 3, 4, 5 или 6). Все эти ионы имеют сферическую симметрию. Сюда могут быть также отнесены оба ряда внутренних переходных элементов, лантаноиды и актиноиды в состоянии окисления +П1, так как незаполненный 4/- или 5/-электронный подуровень находится значительно глубже по сравнению с валентными электронами и оказывает на природу связи относительно небольшое влияние. Римскими цифрами [c.242]

    Кинетические методы исследования комплексных соединений позволяют оценить реакционную способность, взаимное влияние лигандов, зафиксировать необычные координационные состояния центрального иона металла, решить вопрос о природе связи металл — лиганд. [c.138]


    Скорости анодного и катодного процессов должны быть равны и зависят от потенциала металла. На величину потенциала оказывают влияние природа металла, химический состав,, структура, чистота ио примесям, состояние поверхности, деформации и напряжения и т. д., а также химическая природа растворителя, природа и концентрация ионов в растворе, температура, давление и скорость движения среды. [c.15]

    В зависимости от природы ионов металла влияние pH на их ионное состояние различно. В случае металлов, ионы которых являются поляризаторами средней и особенно большой силы, гидратированные ионы их, как известно, проявляют свойства бренстедовских кислот и вследствие этого подвергаются в водном растворе гидролизу  [c.341]

    Изучение влияния состава раствора на сорбционные свойства комплекситов показало, что возможность формирования комплексных соединений в фазе ионитов определяется природой, концентрацией и состоянием ионов переходных металлов, активной концентрацией ионов Н+, природой и концентрацией находящихся в растворе лигандов, составом растворителя. Зная влияние перечисленных факторов на степень закомплексованности ионов металлов ионитами, можно, варьируя состав раствора, изменять селективность сорбционного процесса и управлять процессом селективной сорбции, а также проводить научно-обоснованный выбор ионита для решения конкретных практических задач, [c.233]

    Следует, однако, отметить, что закономерности, установленные при восстановлении одного металла, не могут быть полностью перенесены на другие металлы в связи с многообразием особенностей, характерных для различных металлов. Поэтому для установления общих закономерностей возникает необходимость изучать наиболее характерные металлы [1]. При этом, кроме обычных трудностей, возникающих вследствие непрерывного изменения величины и состояния поверхности в процессе осаждения металла, появляются дополнительные осложнения, связанные с большим разнообразием условий осаждения различных металлов. Действительно, при осаждении различных металлов процесс разряда ионов металла сопровождается большим или меньшим выделением водорода, что затрудняет определение истинной скорости разряда ионов металла и оказывает различный по величине тормозящий или облегчающий эффект на протекание основной реакции разряда ионов металла [2]. С другой стороны, для сопоставления различных металлов по величинам перенапряжений, характеризующим скорость разряда ионов, часто невозможно подобрать сравнимые условия электролиза. В самом деле, в электролитах одинакового состава (одинаковой природы анионов, буферных добавок и т. п.) структура осадков одного и другого металла и истинная поверхность, на которой происходит электродный, процесс, может быть несравнимой. В электролитах же, дающих сравнимые по структуре и, следовательно, истинной плотно сти тока, осадки металла, на величине перенапряжения может отражаться влияние различной природы солей, поверх-, ностно-активных добавок и других факторов. [c.5]

    В основе существующей теории совместного разряда ионов лежит представление, согласно которому при совместном разряде ионов металлов закономерность изменения скорости процесса восстановления ионов от потенциала электрода не изменяется по сравнению с раздельным восстановлением. Следовательно, в этом случае не учитывается влияние изменения природы и состояния поверхности электрода, изменения структуры и состава двойного электрического слоя, а также влияние изменения концентрации электролита и состояния ионов в растворе ма скорость электродных процессов. [c.177]

    Для изучения кислотно-основных равновесий в растворах необ ходимо знать состояние молекул воды, составляющих ближайшую координационную сферу ионов. В работах Пфейффера [599], Вернера [43], А. А. Гринберга [70] по водным растворам, а также Я. И. Михайленко [151], В. И. Семишина [228], О. П. Алексеевой [2], изучавшими взаимодействие порошков активных металлов с твердыми кристаллогидратами, было показано, что в некоторых случаях кристаллизационная вода ведет себя подобно сильным кислотам. Однако до сих пор способность координированных молекул к протолитической диссоциации оценивалась главным образом с позиций влияния поляризующих свойств катиона-комплексооб-разователя. Влиянию природы частиц, образующих внешнюю координационную сферу комплекса, при этом уделялось недостаточное внимание [70]. Однако образование водородной связи между координированными молекулами воды и частицами входящими во внешнюю координационную сферу комплекса (анионы, молекулы воды), может привести к значительному разрыхлению связи О—Н, которое в колебательном спектре связи выразится в виде соответствующего смещения частоты валентных колебаний О—Н в низкочастотную область. [c.144]


    Природа металла также оказывает большое влияние на величину расщепления кристаллическим полем. Атомы или ионы металлов с валентными 43- или 5 -орбиталями обнаруживают гораздо большее расщепление, чем в соответствующих комплексах металлов с валентными З -орбиталя-ми. Например, для Со(ЫНз)б , ЯЬ(ЫНз) и 1г(КНз)б параметр А имеет значение 22900, 34100 и 40 ООО см соответственно. По-видимому, валентные 43- и 5(/-орбитали иона металла лучше приспособлены к образованию а-связей с лигандами, чем З -орбитали, но причины этого не вполне ясны. Важным следствием намного больших значений параметра А у комплексов с центральными ионами металлов, имеющих валентные 43- и 53-электроны, является то, что все комплексы металлов пятого и шестого периодов (второго и третьего переходных периодов) имеют низкоспиновые основные состояния это относится даже к таким комплексам, как ЯЬВг , лиганды которого принадлежат к числу наиболее слабых лигандов приведенного выше спектрохимического ряда. [c.237]

    Вопрос о числе состояний иона в растворах уже обсуждался в разд. 6. Хотя в каждом растворе обнаружена только одна инфракрасная полоса, связанная с колебательным движением иона щелочного металла, было бы преждевременно делать вывод о присутствии только одного вида ионных состояний щелочного металла в каждой исследованной системе. Нам необходим более чувствительный тест на влияние ионного окружения, чем просто наблюдение сдвига колебательной частоты полосы щелочного металла с изменением природы аниона. [c.176]

    Состояние этого, далеко не изученного, вопроса охарактеризовано в работе [4]. В настоящей работе проведено систематическое исследование набухания сульфополистирольных ионитов различной степени сетчатости (КУ-2 с номинальным содержанием ДВБ, равным 2, б, 10 и 25%), содержащих в качестве противоионов ионы водорода, щелочных металлов, серебра и таллия в бинарных смесях вода — ацетон, вода — метанол и, частично, в смесях вода — диоксан, во всем диапазоне изменения состава бинарных растворов. При этом измерены изотермы общего набухания,. а также изотермы сорбции воды и органического компонента. Основная цель настоящей работы — проследить влияние природы бинарного раствора, степени сетчатости ионита, его солевой формы и образования ионных пар на характер распределения компонентов между фазами. При выполнении этой работы мы применяли методику эксперимента, описанную в работах [5, 6]. Измерения выполнены при температуре 25° С. [c.66]

    Одним из основных факторов, влияющих на скорость восстановления ионов металлов из водных растворов, является состояние поверхности электрода. Решающее значение состояния поверхности электрода обусловлено тем, что электрохимические процессы, как правило, протекают на границе фаз электрод — раствор. Естественно, что поверхностные явления, в частности адсорбция различного рода частиц на поверхности электрода и степень ее заполнения, должны играть существенную роль при протекании электрохимических реакций. Степень заполнения поверхности электрода чужеродными частицами зависит как от природы осаждающегося металла, так и от природы адсорбирующихся частиц. Поскольку в процессе электроосаждения металлов происходит непрерывное обновление поверхности электрода новыми слоями осаждаемого металла, то естественно, что при этом существенное значение приобретает соотношение скоростей осаждения металла и адсорбции чужеродных частиц. Последние влияют не только на кинетику восстановления ионов металла, но также и на структуру электролитического осадка. Таким образом, адсорбционные явления во всех случаях оказывают существенное влияние на механизм электроосаждения металлов. [c.7]

    Длительное время теория совместного разряда ионов металлов базировалась на представлении, что закономерности восстановления ионов от потенциала электрода при совместном разряде не меняются по сравнению с раздельным восстановлением. При этом не учитывалось, что при совместном осаждении происходит изменение природы и состояния поверхности электрода, структуры и состава двойного электрического слоя, состояния ионов в растворе, т. е. взаимное влияние совместно восстанавливающихся ионов на скорость электродных процессов. [c.110]

    Влияние природы и состояния поверхности электрода. Изучение влияния природы подкладки при восстановлении ионов металла на твердых электродах затруднено по той причине, что, начиная с момента включения тока при выделении металла, природа подкладки изменяется и процесс восстановления ионов металла происходит как на чужеродной, так и на одноименной подкладке. Особенно наглядно решающая роль влияния природы подкладки на поляризацию выявляется при разряде ионов водорода. Так, постоянная а в формуле Тафеля Т] = а b g 1, показывающая степень затруднения электрохимической реакции, зависит главным образом от природы металла и от состояния поверхности (табл. 12) [56]. [c.111]

    Таким образом, учет влияния природы и состояния поверхности подкладки при совместном восстановлении ионов металлов [c.113]

    Более существенное влияние в этом отношении оказывают факторы, вызывающие изменение термодинамического состояния ионов в растворе. Так, вхождение ионов в комплексы может привести к существенным сдвигам равновесных потенциалов и в результате этого — к соосаждению металлов. Как известно сдвиг потенциалов, обусловленный изменением, активности ионов в растворе, при наличии данных о его природе может быть рассчитан термодинамически. [c.32]

    Под влиянием полярных молекул воды происходит, с одной стороны, разъединение ионов и электронов, а с другой,— взаимное притяжение, обусловленное различными зарядами, вновь объединяет их на металле. Равновесное состояние зависит как от природы металла (его активности), так и от концентрации ионов в растворе. [c.155]

    Одновременное влияние ингибиторов кислотной коррозии на кинетику обеих электрохимических реакций приводит к тому, что стационарные потенциалы металлов изменяются незначительно. Сместить потенциал металла к значениям, при которых становится возможным формирование пассивирующего окисла, органические ингибиторы в кислотах сами по себе не в состоянии. Преимущественно их действие заключается во влиянии на кинетику катодной реакции разряда ионов гидроксония. При этом, как было показано в работе [59], как катионоактивные, так и анионоактивные добавки увеличивают перенапряжение водорода на железе, платине и меди. Это, на первый взгляд, противоречит тем теоретическим воззрениям на природу ф1-потенциала, которые были выше изложены. Согласно теории, катионоактивные добавки должны повышать перенапряжение водорода, а анионоактивные — его понижать. [c.118]

    Известно, что состояние металла в значительной степени оказывает влияние на разряд водорода на наводороженной поверхности железа выделение водорода происходит легче, чем на ненаводороженной [131]. Так как природа и электрохимическое состояние поверхности электрода будут раэличньми при раздельном и совместном разряде ионов металлов, то и скорость электродных процессов будет разлиода. В частности, при электроосал дении сплава железа с никелем процесс катодного выделения водорода определяется сочетанием двух лимитирующих стад.ий -замедленного разряда и каталитической рекомбинации, вклад которых зависит от состава и структуры сплава [483]. [c.166]

    Полярографически активный комплекс восстанавливается при более положите.чьных потенциалах, чем соответствующий аква-ион металла. Это обычно характерно для аква-ионов металлов, восстанавливающихся на ртути с высоким перенапряжением (устойчивая гидратация). Координированный лиганд, особенно лиганд, в адсорбированном состоянии (эффект электрического поля) [97], облегчает дальнейшую дегидратацию (лабилизация под влиянием лиганда оставшихся молекул воды [124, 125], и отсюда, учитывая адсорбцию полярографически активного комплекса [126], электрохимическая стадия для некоторых комплексов приближается к обратимой [110, 126, 127]. В процессе восстановления комплексов вначале образуется комплекс с нуль-валентным металлом [87, 97, 110, 126, 127], после чего следует необратимая химическая стадия [110]. На наличие этой стадии (дезактивация амальгамы никеля) обращалось внимание еще в работе [128], однако природа этой стадии до сих пор не ясна. Можно лишь отметить, что для некоторых комплексов никеля [128] данной стадией не является стадия диссоциации комплекса с ну.ль-валентным металлом. В противном случае невозможно было бы объяснить постоянство рассчитанного при различных концентрациях лиганда потенциала полуволны аква-иона нике.ия [128]. Этот расчет предполага.л обратимость стадии диссоциации комплекса с нуль-валентным никелем. [c.283]

    Взгляды Лайонса в какой-то мере отражают некоторые особенности, свойственные процессам катодного выделения металлов. Несомненно, что известная роль в этих процессах должна быть отведена особенностям электронного строения ионов. В то же время теория Лайонса не истолковывает полностью природу процессов электроосаждения металлов. Прежде всего это связано с отсутствием надежных данных о строении ионов в растворе и на поверхности электрода, что заставляет прибегать к помощи гипотетических структур. Далее, теория Лайонса даже при использовании подобных структур не в состоянии объяснить некоторые опытные закономерности, относящиеся, например, к выделению металлов платиновой группы. В его теории не учитывается влияние на процесс электроосаждения металла величины потенциала электрода и строения двойного электрического слоя. Наконец, она не может объяснить ту роль, которую играют в этом процессе состав раствора и особенно поверхностноактивные вещества. Дальнейшее развитие представлений о роли структуры разряжающихся металлических ионов при электроосаждении металлов было дано Вылчеком (У1сек, 1957). [c.438]

    В случае твердого состояния обе эти частоты несколько изменяются в зависимости от природы иона металла, а также от природы той группы, к которой присоединена ионизованная карбоксильная группа. Кейгарайз [83] показал, что для одно- и двухвалентных элементов имеет место линейная зависимость частоты антисимметричных валентных колебаний группы СОО саги от величины электроотрицательности элемента такую же зависимость отметил и Стимпсон [84]. Изменение природы соседней замещающей группы также дает заметный эффект, так что имеются, например, вполне четкие отличия характеристических частот формиат-, ацетат- и оксалат-нонов [85]. Аналогичным образом в случае замещенных бензойной кислоты частота карбоксилат-иона меняется в зависимости от природы ароматических заместителей [84]. Указанные изменения лучше можно изучить, определяя разность частот между двумя полосами поглощения карбоксилат-иона, так как эта разность может быть измерена точнее, чем положение каждой из полос в отдельности. В случае трифторацетата натрия влияние группы Fg сказывается особенно сильно, так что частоты СОО имеют значения 1680 см и 1457 [86]. Первая из них близка к обычному интервалу частот карбонильной группы неионизованных кислот, но ее нужно сравнивать с частотой 1825 лi , характерной для неассоциированной кислоты. [c.251]

    Один из важных факторов, определяющих агрегативную устойчивость суспензий микроорганизмов, — наличие поверхностного заряда клетки. Этот заряд зависит от видовой принадлежности, строения и физиологического состояния клеток и может варьироваться в широких пределах [14]. В отличие от частиц небиологической природы, имеющих четко выраженную границу раздела фаз, клеточная поверхность формируется на основе ряда поверхностных структур, включающих клеточную стенку, а также капсулы, пили, жгутики и ряд других, каждая из которых может оказьшать влияние на электрические поверхностные характеристики суспензий и определять их устойчивость [15]. Клеточные стенки микроорганизмов могут различаться как строением, так и химическим составом. Диссоциация функциональных групп полимеров формирует поверхностный заряд клеток. Заметный вклад в возникновение ловерх-ностного заряда вносят адсорбированные ионы металлов. Кроме того, образование поверхностных зарядов клеток обусловлено наличием трансмембранного потенциала, т. е. разности потенциала между цитоплазмой клетки и окружающей ее средой. Причина возникновения разности потенциалов связана с наличием физико-химических гра-диентов между цитоплазмой и средой, обусловленных активным переносом ионов и молекул клеткой. Трансмембранный потенциал может оказать заметное влияние на электрокинетический потенциал клетки [14]. [c.17]

    Целесообразно рассмотреть влияние анионных мицелп на восстано> Бпение и феногиазином в триплетном состоянии. Специфика ситуации, реализующейся в системах, содержащих анионные мицеппы, заключается в том, чго многочисленные заряженные ионы металла, такие, как Еи , интенсивно адсорбируются на поверхности мицелл. Поэтому изучение реакций такого типа может дать нам представление о природе процессов переноса электрона через границу раздела заряженный липид/вода. [c.280]

    Взаимодействия ионов металлов с белками, естественно, отличаются от взаимодействий ионов металлов с аминокислотами и пептидами, поскольку в белках группы а-ННг и а-СООН длинных полипептидных цепей разделены ковалентными связями ряда расположенных между ними остатков. Эти взаимодействия отличаются также из-за влияния конформационного состояния пептидной цепи, в результате которого потенциальное место присоединения может блокироваться, а удаленная боковая цепь может оказаться в подходящем месте для образования хелатного кольца. Примерами подходящего расположения боковой цепи лиганда, делающего возможным образование прочного хелата со специфическим ионом металла, могут служить металлопротеины и металлоферменты, в которых сильное взаимодействие между металлом и белком играет решающую и специфическую биологическую роль. Металлопротеины и металлоферменты будут рассмотрены в последующих главах. В этой главе в основном будет обсуждено поведение белков in vitro в присутствии ионов металлов, с которыми они ие обязательно реагируют в природе. Биологическая функция двойных и других описанных здесь комплексов металлов с белками не известна, за исключением комплексов ио а меди (И) с альбумином и ионов цинка с инсулином, для которых было постулировано участие в транспорте и хранении соответственно. [c.274]

    При совместном восстановлении ионов металлов природа и состояние поверхности подкладки могут оказывать двоякое влияние. В одном случае вследствие сплавообразования потенциал восстановления ионов металла по сравнению с равновесным потенциалом снижается (деполяризация). В другом случае вследствие затруднения протекания электрохимической реакции потенциал восстановления ионов металла по сравнению с равновесным потенциалом увеличивается (поляризация). [c.112]

    Допущение о том, что выделение металла совершается не как последовательная стадийная реакция, а как один элементарный акт, противоречит всем результатам, полученным при изучении кинетики различных электрохимических процессов. Например, для реакции катодного выделения водорода принятие такого допущения привело бы к не отвечающему действительности выводу о независимости водородного перенапряжения от природы металла. Чтобы объяснить связь, существующую между металлическим перенапряжением и природой металла, а также характер влияния состава раствора на величину перенапряжения, необходимо принимать во внимание не только начальное и конечное состояния металлических ионов, но и природу элементарных актов. При зтом следует учитывать состояние и озойства реагирующих частиц на разных стадиях суммарного процесса. [c.466]

    В большинстве случаев скорости электрохимических реакций совместного восстановления ионов существенно отличаются от скоростей раздельного выделения чистых металлов при соответствующих потенциалах электрода. Следовательно, в реальных условиях электроосаждения спланюв необходимо учитывать, кроме указанных выше факторов, влияние изменения природы и состояния поверхности электрода, строения двойного электрического слоя, влияние энергии взаимодействия компонентов яри образовании кристаллической решетки сплава типа твердо- [c.256]

    Оргел [ИЗ] рассмотрел некоторые свойства ионов переходных металлов на основе теории молекулярных орбиталей и теории поля лигандов. Мы ограничимся, главным образом, применением теории поля лигандов для определения энергии удаления двухвалентных ионов из водного раствора. Понижение энергии комплекса, обусловленное влиянием поля лигандов, определяется симметрией и напряженностью поля (т. е. природой лигандов и их расположением), а также числом и состоянием -электронов. Теория предсказывает, что поле лигандов не должно оказывать влияния на свойства комплекса, если -подуровни заняты полностью или если они заполнены ровно наполовину. Эти два случая реализуются соответственно для ионов 2н и Мн +. В нервом приближении понижение энергии за счет поля лигандов пропорционально (V —5), где V — число неспаренных -электронов. Приняв в рассмотрение некоторые осложняющие факторы, в особенности для иона Сн " , Оргел дал оценки понижения энергии для ряда ионов в квакомплексах. Если вычесть эти поправки из наблюдаемых значений энергии удаления ионов из водного раствора, то получаются исправленные значения, которые возрастают с ростом атомного номера. Если, далее, вычесть из суммы двух первых ионизационных потенциалов иона Си + энергию, необходимую для того, чтобы перевести электрон с -орбитали на 5-орбиталь, то максимум на кривой зависимости ионизационных потенциалов от атомного номера также исчезает. В связи с этим полагают, что наблюдаемые отклонения в зависимости энергий удаления ионов из раствора связаны с влиянием ноля лигандов. Соответствующая поправка может достигать 5% от общей теплоты удаления иона из раствора. [c.194]


Смотреть страницы где упоминается термин Влияние природы и состояния ионов металла: [c.467]    [c.307]    [c.274]    [c.85]    [c.251]    [c.371]    [c.257]    [c.157]    [c.79]   
Смотреть главы в:

Комплексообразующие иониты -> Влияние природы и состояния ионов металла




ПОИСК





Смотрите так же термины и статьи:

Ионы в -состоянии

Природа иона металла

Природа ионов



© 2025 chem21.info Реклама на сайте