Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пространство внеклеточное

    Ионы Са2+ играют важную роль в регуляции многих биохимических реакций, протекающих в клетке. В поддержании низкой по сравнению с внеклеточным пространством концентрации ионизированного Са + в цитоплазме принимают участие митохондрии. Эти внутриклеточные органеллы способны аккумулировать большие количества Са + и вместе с тем им принадлежит решающая роль в обеспечении энергетических потребностей клетки в целом. Накопление Са + в митохондриях существенно влияет на активность многих ферментов, локализованных в матриксе и катализирующих отдельные стадии цикла трикарбоновых кислот, окисления кетокислот с разветвленной цепью, липолиза и др. Ярким примером участия Са + в регуляции собственных метаболических функций митохондрий является торможение окислительного фосфорилирования. [c.476]


    Рассмотрим теперь нестационарный случай, когда состояние гомеостаза в сравниваемых организмах было нарушено в момент / = О и при г > О происходят процессы восстановления гомеостатических концентраций частиц в крови во внеклеточном пространстве. Распространим на этот случай введенные выше понятия. [c.184]

    Б. Внеклеточная жидкость этот компартмент содержит примерно одну треть всей воды, которая распределена между плазмой и интерстициальным пространством. Внеклеточная жидкость обеспечивает систему доставки. С ее помощью к клеткам поступают питательные вещества (например, глюкоза, жирные кислоты, аминокислоты), кислород, различные ионы и микроэлементы, а также многочисленные молекулы регуляторов (гормонов), координирующих работу пространственно разобщенных клеток. Внеклеточная жидкость удаляет СО2, отходы метаболизма и токсичные или обезвреженные вещества из непосредственного окружения клетки. [c.128]

    Диапазон взаимосвязей между цитоскелетом и экспрессией генов станет яснее при сравнении нормальных и трансформированных клеток. Однако сказанное выше уже показывает, что эти взаимосвязи имеют место все время- и во всех клетках. Цитоскелет влияет на спектр, а в некоторых случаях и на чувствительность белков, расположенных на клеточной поверхности, включая рецепторы. С другой стороны, связь мембранных рецепторов с растворимыми факторами среды и взаимодействие мембранных белков с внеклеточным матриксом могут влиять на организацию цитоскелета. Таким образом, в принципе оказывается возможной обратная связь между цитоскелетом и внеклеточным пространством. Внеклеточный матрикс играет исключительно важную роль в экспрессии дифференцированного фенотипа. Как мы видели выше, на некоторые из регуляторных эффектов может непосредственно влиять конфигурация цитоскелета. Роль внеклеточного матрикса, возможно, заключается в изменении состояния цитоскелета, который в свою очередь прямо или через какие-то промежуточные процессы воздействует на экспрессию генов. [c.104]

    Биологические функции биометаллов и их координационных соединений с биолигандами, другими словами, роль их в живых организмах давно интенсивно изучаются. И тем не менее на сегодня механизмы биологического действия ионов щелочных и щелочноземельных металлов окончательно не выяснены. Одной из важнейших проблем является распределение Ка+ и К+ между внутриклеточным и внеклеточным пространством. Наблюдается избыток во внеклеточном пространстве, К+ — во внутриклеточном. Эти ионы ответственны за передачу нервных импульсов. Мо2+ изменяет структуру РНК Са + играет особую роль в процессах сокращения и расслабления мышц. Ионы железа, меди н ванадия в биокомплексах присоединяют молекулярный кислород и выполняют, таким образом, функцию накопления, хранения и транспорта молекулярного кислорода, необходимого для реализации многих процессов с выделением энергии, а также для синтеза ряда веществ в организме. [c.568]


    Огромную роль осмос играет в живой природе. Стенки каждой клетки организма представляют собой полупроницаемую перегородку, и поэтому обмен веществ, перенос метаболитов и регулирование концентрации веществ в клетке и внеклеточном пространстве осуществляются в результате осмоса. [c.155]

    Подобно бактериям, клетки высших растений и животных часто покрыты внеклеточным материалом. Так, растительные клетки имеют жесткую стенку, содержащую в большом количестве целлюлозу и другие полимерные углеводы. Клетки, расположенные на наружных поверхностях растений, бывают покрыты восковым слоем. Клетки животных снаружи обычно защищены гликопротеидами — комплексами углеводов со специфическими белками клеточной поверхности. Пространство между клетками заполнено такими цементирующими веществами , как пектины у растений и гиалуроновая кислота у животных. Нерастворимые белки —коллаген и эластин — секретируются клетками соединительной ткани. Клетки, лежащие на поверхности (эпителиальные или эндотелиальные), нередко граничат с другой стороны с тонкой, содержащей коллаген базальной мембраной (рис. 1-3). Часто в результате совместного действия клеток различного типа происходит отложение неорганических соединений — фосфата кальция (в костях), карбоната кальция (скорлупа яиц и спикулы губок), окиси кремния (раковины Диатомовых водорослей) и т. п. Таким образом, обмен веществ в значительной мере протекает вне клеток. [c.37]

    В противоположность антителам, нейтрализующим чуждую молекулу путем прямого контакта и часто появляющимся во внеклеточном пространстве даже через годы, интерфероны действуют лишь несколько часов. В какой степени кооперируют обе системы одна с другой, в настоящее время еще трудно сказать. [c.430]

    Содержание воды в клетках достигает 65—80%. В протоплазме на каждую молекулу белка приходится около 1800 молекул воды, причем состав ее в клетках непрерывно обновляется. В зависимости от условий культивирования содержание воды в клетках может меняться. Часть воды находится в межклеточном пространстве, это внеклеточная вода, а часть воды находится в самих клетках. В свою очередь находящаяся в клетках вода может быть в свободном и в связанном с поверхностью макромолекул виде. [c.23]

    Вьщеленные индивидуальные гликозаминогликаны могут содержать смесь цепей различной длины (рис. 5.5). Гликозаминогликаны как основное скрепляющее вещество связаны со структурными компонентами костей и соединительной ткани. Их функция состоит также в удержании большой массы воды и в заполнении межклеточного пространства. Иными словами, гликозаминогликаны —основной компонент внеклеточного вещества—желатинообразного вещества, заполняющего межклеточное пространство тканей. Они также содержатся в больших количествах в синовиальной жидкости-это вязкий материал, окружающий суставы, который служит смазкой и амортизатором. [c.187]

    Натрий. Это основной осмотически активный ион внеклеточного пространства. В плазме крови концентрация ионов Ка" приблизительно в 8 раз выше (132—150 ммоль/л), чем в эритроцитах. [c.583]

    Медиатор должен высвобождаться при стимуляции нейрона, т. е. надо доказать его присутствие во внеклеточном пространстве. [c.238]

    Тонкая ( 8 нм) наружная клеточная мембрана — плазмалемма (рис. 1-4)—регулирует поток веществ в клетку и из клетки, проводит импульсы в нервных и мышечных волокнах, а также участвует в химических взаимодействиях с другими клетками. Складки наружной мембраны нередко вдаются глубоко внутрь клетки, в цитоплазму так, на--Пример, в клетках поперечнополосатых мышц они образуют трубочки Т-системы, которая участвует в проведении возбуждения, инициирующего процесс сокращения (гл. 4). Складки плазматической мембраны могут соединяться с ядерной оболочкой, создавая прямые каналы (один или несколько) между внеклеточной средой и перинуклеарным пространством [12]. [c.29]

    Цитоплазматическая мембрана ограничивает размеры клеток. У животных во внешней ее части (так называемой клеточной оболочке) локализованы рецепторы — гликопротеины, принимающие и передающие сигналы вовнутрь клетки. Кроме того, в клеточной оболочке находятся сайты узнавания родственных клеток благодаря им клетки находят и соединяются друг с другом. Оболочка ассоциирована с двухслойной полупроницаемой мембраной, которая селективно отбирает те вещества, которые необходимо пропускать в цитоплазму и элиминировать во внеклеточное пространство. У растений, кроме мембраны, имеется клеточная стенка, пронизанная большим числом отверстий, необходимых для контакта клеток между собой и для обмена веществ. [c.14]

    Подобный же процесс, только в обратной последовательности, называется экзоцитозом. В эукариотических клетках постоянно секретируются различные типы молекул с помощью процесса экзоцитоза. Некоторые из них могут оставаться на мембране клетки и становиться ее частью, другие — выходят во внеклеточное пространство. Так, секреторные белки упаковываются в транспортные пузырьки в аппарате Гольджи и затем переносятся непосредственно к мембране. [c.314]


Рис. 30.13. Синтез и транспорт М в мембраны и во внеклеточное пространство 1 — цис- 2 — транс-стороны аппарата Гольджи Рис. 30.13. Синтез и транспорт М в мембраны и во внеклеточное пространство 1 — цис- 2 — транс-стороны аппарата Гольджи
    Напомним, что коллаген-внеклеточный белок, но он синтезируется в виде внутриклеточной молекулы-предшественника, которая перед образованием фибрилл зрелого коллагена подвергается посттрансляционной модификации. Предшественник коллагена (сначала препроколлаген, а затем проколлаген) претерпевает процессинг в ходе прохождения через эндоплазматический ретикулум и комплекс Гольджи до появления во внеклеточном пространстве. Внеклеточные амино- и карбоксипротеаза проколла- [c.663]

    Математик. Продолжаю. Итак, во-вторых, во всех моделях, о которых я уже говорил, в уравнениях фигурируют концентрации взаимодействующих частиц в крови, хотя взаимодействуют они в основном в жидкости межклеточного пространства. Это связано с возможностями измерений - концентрацию частиц в крови врачи юмеряют по результатам биохимических анализов крови, а вот во внеклеточном пространстве это сделать, наверно, намного сложнее. [c.46]

    Читатель. Во всяком случае, чего-то для меня неожиданного. Вы же сами говорили, что о подобии процессов в живых организмах ювестно давно. Вот давайте и посмотрим. Из беседы 1 я узнал, что микродвижения взаимодействующих в наших организмах частиц, т.е. молекул глюкозы, белков, гормонов, а также лимфоцитов, макрофагов и др., благодаря хаотическому перемешиванию их во внеклеточном пространстве нужно рассматривать как случайный процесс. Тут же вы сообщаете мне, гro они очень похожи на броуновское движение, причем роль температуры среды здесь должна играть интенсивность микродвижений частиц в организме, которую вы называете Жизненной Теплотой. [c.176]

    Актуальным является изучение механизма оссификации. Процесс минерализации возможен лишь при наличии строго ориентированных коллагеновых волокон. Как было отмечено, непосредственное образование кол-лагенового волокна происходит во внеклеточном пространстве в результате специфического соединения между собой тропоколлагеновых молекул. С помощью рентгеноструктурного анализа и электронной микроскопии показано, что коллагеновое волокно имеет поперечную исчерченность с интервалом 68 нм. Следовательно, период повторяемости структуры (исчерченности) коллагенового волокна в несколько раз меньше, чем длина составляющих волокно молекул тропоколлагена. Это доказывает, что ряды молекул тропоколлагена располжены не точно друг над другом. Иными словами, один ряд тропоколлагенов смещен по отношению к соседнему ряду примерно на /4 длины молекулы. В результате основу структурной организации коллагенового волокна составляют сдвинутые на четверть ступенчато расположенные параллельные ряды тропоколлагеновых молекул. Структурная особенность коллагенового волокна состоит также и в том, что расположенные в ряду молекулы тропоколлагена не связаны по типу конец в конец. Между концом одной молекулы и началом следующей имеется промежуток. Этот промежуток играет особую роль при формировании кости. Вполне вероятно, что промежутки вдоль ряда молекул тропоколлагена являются первоначальными центрами отложения минеральных составных частей костной ткани. [c.675]

    Загадочная, но практически очень важная особенность иммунной системы состоит в том, что в организме могут образовываться антитела против собственных клеток, как это имеет место при аутоиммунных болезнях. К числу таких болезней относится, по-видимому, ревматоидный артрит при этом заболевании сыворотка крови и суставная жидкость содержат комплексы IgG с неизвестными антигенами, причем такие комплексы не встречаются у здоровых лиц. При тяжелом аутоиммунном заболевании, системной красной волчанке, иммунная система часто образует антитела против собственной ДНК больных. Эти антитела атакуют клетки различных тканей, например эритроциты. Хотя клетки иммунной системы обычно отделены от нервных клеток гематоэнцефа-литическим барьером, все же у мышей нетрудно вызвать аллергический энцефаломиелит, при котором антитела повреждают миелиновые оболочки (т. 1, стр. 354), Другим примером таких заболеваний, называемых болезнями иммунных комплексов, служит амилоидоз, характеризующийся отложением белково-углеводных комплексов во внеклеточном пространстве [196]. Было сделано важное наблюдение, что количество аутоантител и отложения амилоида с возрастом увеличиваются. Предполагается, что болезнь иммунных комплексов является основной причиной старения. Огромное значение для медицины имело выявление природы основного заболевания почек—первичного гломе-рулонефрита, который, как показали исследования, обусловлен перекрестной реакцией между мембраной стрептококка и базальными мембранами почечных клубочков. [c.366]

    Многие ГТ.ф. прочно ассоциированы с клеточньаш мембранами и поэтому действуют только на определенные белки (т. наз. компартментализация). К шш относят, напр., сигнальные протеазы, участвующие в транспорте белков во внеклеточное пространство. В зависимости от локализации фермента протеолиз происходит при разл. pH. Так, П. ф. желудка (напр., пепсин, гастриксин) функционируют при pH [c.113]

    К соединительной (опорной) ткани относятся жировая, хрящевая и костная. Последние два вида тканей содержат большое количество межклеточного вещества, называемого основным и состоящего по преимуществу из сложных полисахаридов. Эмбриональные фибробла-сты дифференцируются в два типа клеток белые продуцируют белок коллаген, а желтые образуют эластин. Оба эти белка накапливаются во внеклеточном пространстве н включаются в состав основного вещества. Остеобласты образуют кости путем отложения (слоями в 3— 7 мкм толщиной) фосфорнокислых и углекислых солей кальция, а также органических цементирующих веществ. [c.54]

    В процессе биосинтеза коллагена в фибробластах сначала образуется водорастворимый протоколлаген, не содержащий гидроксипролина и гидроксилизина. Обе гидроксиаминокислоты образуются позднее при действии на молекулу белка особой проколлагенгидроксилазы. После спонтанного образования трехспиральной структуры в молекулу через ОН-группы гидроксилизина встраивается углеводный компонент (галактоза, глюкоза). Окончательное формирование коллагеновой фибриллы происходит во внеклеточном пространстве после секреции предшественника. [c.424]

    Дисульфидные мостики определяют механические свойства внеклеточных белков. Дисульфидные мостики обычны в белках, котог рые переносятся или действуют во внеклеточном пространстве типичными примерами служат змеиные яды и другие токсины, пептидные гормоны, пищеварительные ферменты, белки комплемента, иммуноглобулины, лизоцимы и белки молока. Кроме того, эти мостики играют важную роль в некоторых крупных структурах. Свойства вязкости и эластичности различных природных продуктов по крайней мере отчасти определяются дисульфидными мостиками между структурными белками [ПО]. Поперечные связи между молекулами кератина придают эластичность шерсти и волосу [110], когезионноэластичный характер теста из пшеничной муки определяется дисульфидами глютенина, а трехмерная сеть дисульфидов глютенина создает трудности при влажном помоле зерна. Таким образом, оказывается, что успехи в таких древних занятиях, как помол зерна, обработка шерсти и даже парикмахерское искусство, зависят от сложных конструкций дисульфидных связей [110]. [c.68]

    На мобилизацию гликогена может влиять гормон эпинефрин, который действует независимо или параллельно со стимуляцией нервными импульсами. Каскад мембранных и цитоплазматических процессов, которые ведут от связывания эпинефрина к фосфорили-рованию глюкозных фрагментов гликогена, функционирует как высоко эффективный механизм кинетического усилия (табл. 11,1). Концентрация гормона во внеклеточном пространстве составляет приблизительно 10 М циклический АМР, который образуется из АТР — первого эффектора гормонального действия, активирует при концентрациях уже от 10" до 10 М белок киназу. Затем происходит 10-кратное усиление при стимуляции фосфорилазы Ь киназы, и заключительное усиление в 20 Н- 50 раз достигается при превращении фосфорилазы Ь в фосфорилазу а. [c.290]

    Гипонатриемия сопровождается дегидратацией организма. Коррекция натриевого обмена достигается введением растворов хлорида натрия с расчетом дефицита его во внеклеточном пространстве и клетке. [c.583]

    Продолжим сравнение аксона с электрическим кабелем специфическое сопротивление аксоплазмы гигантского аксона кальмара Rm равно 30 Ом, а сопротивление внеклеточного пространства Rout равно 20 Ом. Медный провод такой же толщины проводит ток в —10 раз лучше. Изоляция сокращает потери (сопротивление мембраны =1000 Ом, а при толщине мембраны 5 нм i m=10 Ом/см). Качество кабеля определяется [c.116]

    Причиной высвобождения ацетилхолина является деполяризация нервного окончания в результате достигающего его потенциала действия. Однако в отсутствие ионов кальция во внеклеточном пространстве высвобождения медиатора не происходит. Мы уже упоминали, что ионы кальция влияют и на пороговую величину потенциала действия. Сейчас кажется очевидным, что они играют ключевую роль в химической синаптической передаче. Деполяризация нервного окончания увеличивает проницаемость мембраны для ионов кальция и, следовательно, их внутриклеточную концентрацию. Однако кальций, попадающий в нервное окончание, должен выделиться снова, если стимуляция Синапса временно прекращается. Имеются многочисленные доказательства того, что внутриклеточная концентрация кальция регулируется митохондриями и такими белками, как кальмодулин и кальциневрин (гл. 7). Митохондрии располагают очень эффективным кальциевым насосом, а ингибиторы митохондриальной функции вызывают, кроме того, количественное увеличение миниатюрного потенциала концевой пластинки, что также свидетельствует об ингибировании поглощения кальция митохондриями. Неясно, куда именно кальций переносится митохондриями с тем, чтобы они сами не перенасытились этими ионами. Еще меньше известно о молекулярном механизме кальциевой стимуляции высвобождения медиатора. Высказаны соображения о вкладе актомиозиниодобного комплекса, но экспериментальных доказательств этого еще нет. Зависимость кальциевого эффекта от его концентрации показывает, что несколько ионов (возможно, четыре) кооперативно активируют высвобождение кванта медиатора. Ионы Mg + конкурируют с [c.200]

    Бактериородопсин, в молекуле которого Шиффово основание находится в протонированной форме, поглощает свет с длиной волны 570 нм, а в депротонированной — при 412 нм. Протон, отделившийся на свету от Шиффова основания, переходит во внеклеточное пространство, а Н , протонирующий Шиффово [c.421]

    Биологическая функция полипренолов состоит в переносе глюкозы и других сахаров через клеточные мембраны. In vivo полипренолы и долихолы находятся в виде пирофосфорных эфиров. Во внеклеточном пространстве они под действием ферментов образуют фосфоэфирную связь с молекулой сахара. Такой пренилированный сахарофосфат легко проходит через клеточную мембрану, а в цитоплазме, гидролизуясь, освобождает углевод, который далее утилизируется клеткой. Сами гидрофильные молекулы сахаров не способны проникнуть сквозь гидрофобную оболочку клетки. [c.262]

    Микроскопия. Приготовление и окраску препаратов производят так же, как и при исследовании на хламидиоз. При микроскопии микоплазмы и уреаплазмы выявляются в виде полиморфных структур зерна, гранулы, коккобактерии. Они могут располагаться на поверхности эпителиальных клеток, лейкоцитов, а также во внеклеточном пространстве. Разработаны методы иммунофлюоресценции, позволяющие выявлять А Г возбудителя в мокроте и другом исследуемом материале. [c.251]

    У грамположительных бактерий экзоферменты топологически могут быть строго внеклеточными (многие протеазы, гликозидазы и др) и локализованными с наружной стороны клеточной мембраны, например, а-глюкозидаза у Вас h henifonms (это можно доказать при протопластировании клеток, когда ферменты переходят в окружающую среду после удаления клеточной стенки) Грибы в отношении секреции экзоферментов уподобляют грам-положительным бактериям У грамотрицательных бактерий экзоферменты дополнительно могут находиться в периплазматическом пространстве Казалось бы, что такие ферменты должны рассматриваться внутриклеточными, однако они достаточно легко освобождаются при осмотическом шоке или в результате протоп-ластирования клеток [c.56]


Смотреть страницы где упоминается термин Пространство внеклеточное: [c.332]    [c.84]    [c.190]    [c.166]    [c.583]    [c.190]    [c.20]    [c.69]    [c.212]    [c.14]    [c.15]    [c.470]    [c.490]    [c.580]   
Структура и функции мембран (1988) -- [ c.86 ]




ПОИСК





Смотрите так же термины и статьи:

Пространство



© 2024 chem21.info Реклама на сайте