Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физические свойства и химическое строение молекул

    Для экспериментального исследования строения молекулы помимо химических методов используют физические, при проведении которых не теряется химическая индивидуальность вещества. К физическим инструментальным методам относят эмиссионную спектроскопию, рентгенографию, электронографию, нейтронографию, магнитную спектроскопию [электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР)], мольную рефракцию, парахор и магнитную восприимчивость. Последние три экспериментально более простых метода основаны на установлении физических свойств — характеристик вещества, обладающих аддитивностью, т. е. подчиняющихся правилу сложения. Мольная рефракция и парахор равны сумме аналогичных величин для атомов или ионов, из которых составлена молекула (аддитивное свойство), и поправок (инкрементов) на кратные связи, циклы н места положения отдельных атомов и групп, характеризующих структурные особенности молекулы (конститутивное свойство). Многие физические методы исследования строения молекулы используют и как методы физико-химического анализа. [c.4]


    Прежде всего, белки уникальны в отношении химического строения. Это гетерогенные нерегулярные полипептидные последовательности 20 а-аминокислот и их производных, включающих самые разнообразные по своим химическим и физическим свойствам, т.е. валентным и невалентным взаимодействиям, атомные группы. В химическом построении белковых молекул уже можно усмотреть огромные потенциальные возможности к вариации физико-химических свойств. И в то же время белки представляют собой фактически единственный класс соединений, химические свойства которых нельзя непосредственно соотнести с химическим строением молекул. Поведение белков всецело определяется исключительной, присущей только им пространственной структурной организацией. Лишаясь ее, белки теряют все свои биологические свойства. За редким исключением, лишь белковые цепи способны самопроизвольно свертываться в строго детерминированные структуры, геометрия и конформационная динамика которых в физиологических (нативных) условиях полностью определяются аминокислотной последовательностью. Трехмерные структуры белков индивидуализированы, очень сложны и имеют строгий порядок, не сводящийся, однако, к периодичности. Способность природной полипептидной цепи к пространственной самоорганизации и обретению определенной молекулярной структуры - самая яркая особенность белков, отсутствующая у молекул искусственных полимеров, в том числе у полученных человеком поли-а-аминокислот. В растворе синтетический полимер находится в состоянии статистического клубка, флуктуации которого могут приводить к появлению в цепи регулярных участков лишь ближнего порядка. При этом, однако, ни при каких условиях не образуются стабильные трехмерные структуры, тем более идентичные для всех молекул данного полимера. В твердом виде синтетический полимер пребывает в аморфном состоянии, которое может включать частично кристаллическую фазу из беспорядочно ориентированных друг относительно друга зародышевых микрокристаллических областей. Искусственные полимеры отличаются качественно и по своим химическим свойствам, которые в той или иной мере воспроизводят свойства соответствующего мономера и могут быть описаны ограниченным набором реакций, специфичных для повторяющегося звена в свободном состоянии. [c.51]

    Такой же вывод можно сделать и в теХ( случаях, когда при работе двигателя на двух топливах, близких по физическим, но различающихся по химическим свойствам, наблюдается существенное различие параметров рабочего процесса. Например, н-гептан и изооктан (2,2,4-триметилпентан) характеризуются близкими физическими свойствами температура кипения 371,4 и 372,3 К, теплота испарения 31,7 и 31,0 кДж/моль, давление насыщенных паров при 373 К равно 1,06-10 и 1,04-10 Па соответственно. В то же время они различаются по октановому числу, зависящему от химического строения молекулы у н-гептана октановое число принято равным нулю, а у изооктана — 100. С точки зрения физической модели при работе карбюраторного двигателя на обоих топливах параметры рабочего процесса должны быть идентичными. Однако хорошо известно, что прн степени сжатия, превышающей 2,8 (у современных двигателей она равна 7—9), двигатель на н-гептане работает с детонацией , которая может привести к его разрушению. [c.145]


    Основу органической химии составляет теория химического строения А. М. Бутлерова (1861). Она утвердилась и развивалась трудами выдающихся русских химиков В. В. Марковникова, Е. Е. Вагнера, С. Н. Реформатского, Л. А. Чугаева, А. Е. Фаворского, Н. Д. Зелинского и др. Согласно теории А. М. Бутлерова свойства вещества определяются не только числом и природой атомов, строящих молекулы данного вещества, но и порядком химической связи их в молекулах, т. е. химическим строением молекул. Эта теория успешно справилась с объяснением открытого в начале XIX в. явления изомерии, которое заключается в существовании соединений с одинаковым качественным и количественным составом, но различающихся физическими и химическими свойствами. Различие свойств у изомеров, по Бутлерову, есть следствие разного порядка химической связи одного и того же числа атомов каждого рода в изомерных молекулах. [c.461]

    Сложная многокомпонентная смесь неуглеводородных компонентов нефти была разделена на несколько фракций более или менее однородных но составу и свойствам веществ. Это несколько упрощало изучение их строения. К середине нашего столетия были разработаны и испытаны новые физические методы, позволяющие решать ряд структурно-молекулярных вопросов, касающихся сложных органических веществ. Удачно подобранный комплекс таких методов позволил приступить непосредственно к изучению строения молекул нефтяных асфальтенов. Корреляция полученных данных с прямыми химическими исследованиями делает особенно достоверными сведения о химическом строении молекул нефтяных [c.91]

    Ретроспективная оценка роли физических методов в определении структуры асфальтенов показывает, что каждый из них рано или поздно апробировался на столь сложном физическом объекте п сыграл при этом определенную роль. Однако необходимо отметить, что, несмотря на увеличение информативной способности современных физических методов анализа, нельзя назвать из их числа такой метод, который бы позволил составить достаточно полное представление о структуре асфальтенов. В то же время комплексное их использование нозволяет отражать различные стороны такой многогранной научно-практической проблемы, как раскрытие химического строения молекул асфальтенов и многообразия их физико-химических свойств. [c.205]

    В исследовании углеводородов высококипящей нефти отчетливо прослеживается различие и многообразие химического строения молекул, которое значительно усиливается при переходе к гетеро-органическим соединениям. Дистилляты, выкипающие при температуре выще 300°С, отличаются как химической, так и физической неоднородностью для них характерно усреднение и сближение элементного состава и свойств составляющих компонентов. Значение природы и распределение основных функциональных групп этих соединений приобретает в настоящее время все больший научный и практический интерес. Это связано с бурным развитием вторичных процессов в нефтепереработке и использованием составляющих нефти в качестве химического сырья, а также с возрастающей потребностью в высококипящих топливах и маслах. Одновременно возрастает роль физических и физико-химических методов, которые, не вызывая существенных изменений в структу- [c.55]

    В последние годы проявляется большой интерес к сераорганическим соединениям, содержащимся в высококипящих дистиллятах. Уже при исследовании их углеводородной части отчетливо прослеживается различие и многообразие химического строения молекул, которое значительно усиливается при переходе к гетероорганическим соединениям. Дистилляты, выкипающие выше 300° С, отличаются как химической, так и физической неоднородностью для них характерно усреднение и сближение элементного состава и свойств составляющих компонентов 24]. В связи с бурным развитием вторичных процессов в нефтепереработке и использованием составляющих нефти в качестве химического сырья, а также с возрастающей потребностью в высококипящих топливах и маслах знание природы и распределения основных функциональных групп ОСС приобретает в настоящее время все больший научный и практический интерес. Одновременно возрастает роль физических и физико-химических методов, которые, не вызывая существенных изменений в структуре молекул, позволяют изучать состав наиболее тяжелых фракций нефти. Оказалось, что для исследования сераорганических соединений высококипящих дистиллятов нефти неприменимо большинство традиционных методов, успешно используемых при изучении состава сераорганических соединений средних нефтяных дистиллятов. [c.11]

    Химические процессы изменяют строение атомов и молекул, из которых состоит данное вещество (или вещества), и в результате получаются новые веи ества с новыми химическими и физическими свойствами. Химические процессы (или реакции) происходят с в ы-делением или поглощением энергии, и вещества реагируют между собой в определенных массовых отношениях. [c.11]


    По химическому строению молекулы, химическим и физическим свойствам оксид углерода проявляет большое сходство с молекулярным азотом. Молекулы СО и N2 изоэлектронны, имеют равные молекулярные массы, высокий порядок связи и относятся к самым прочным двухатомным частицам. В отличие от СО2 оксид углерода не обладает кислотной природой. Для него наиболее характерны реакции окисления и присоединения. Первые обусловлены степенью окисления углерода в С0(+2), а вторые — неподеленными электронными парами атомов углерода и кислорода. [c.360]

    На примере этилбензола и диметилбензолов мы знакомимся с весьма важным и широко распространенным в органической химии явлением, когда несколько соединений имеют одинаковый химический состав, но различное строение молекул. Это явление принято называть изомерией. Соединения, имеющие одинаковый состав, но различное строение, называются изомерными соединениями или изомерами. Изомеры имеют одинаковую эмпирическую формулу, но различные структурные формулы. Так как свойства органических веществ зависят от их строения, то понятно, что изомеры обладают различными физическими свойствами. Химические свойства изомеров обычно близки, но все же различаются, и в некоторых случаях весьма значительно. [c.32]

    Химические свойства, так же как и физические, зависят от строения молекулы. Какие же особенности строения молекулы позволяют предполагать кислотные или основные свойства соединения В настоящей главе [c.34]

    Химические и физические свойства атомов и молекул определяются строением их электронных оболочек, взаимодействующих с атомными ядрами. В основе химии и, тем самым, биохимии и биологии лежит квантовая механика. Общая теория строения и свойств молекул называется квантовой химией, соответственно область квантовомеханических исследований строения и свойств биологически функциональных молекул именуется квантовой биохимией. [c.108]

    В области соприкосновения физики и химии возник и успешно развивается сравнительно молодой из основных разделов химии — физическая химия. Предвиденная еще М. В. Ломоносовым, она окончательно оформилась лишь в последней четверти XIX в. в результате успешных попыток количественного изучения физических свойств химических веществ и смесей, теоретического объяснения молекулярных структур. Экспериментальной и теоретической базой этого послужили работы Д. И. Менделеева (открытие периодического закона, разработка гидратной теории растворов), Вант-Гоффа (термодинамика химических процессов, исследование химического равновесия), С. Аррениуса (теория электролитической диссоциации), В. Оствальда (закон разбавления) и т. д. Предметом ее изучения стали общетеоретические вопросы, касающиеся строения и свойств молекул химических соединений, процессов превращения веществ в связи с взаимной обусловленностью их физическими свойствами, изучение условий протекания химических реакций и совершающихся при этом физических явлений. Ныне это разносторонне разветвленная наука, тесно связывающая физику и химию. [c.87]

    Равным образом и в растворах веществ, сходных по физическим свойствам и химическому строению, молекулы компонентов в растворах находятся практически в тех же условиях что и в чистом компоненте. Поэтому образование таких растворов не сопровождается тепловым эффектом или изменением объема и такие растворы по свойствам приближаются к идеальному. [c.79]

    В последние годы наблюдается расцвет промышленности полимерных материалов, которые находят все более широкое применение, постепенно вытесняя в ряде областей стекло, металлы и другие традиционные материалы. Совершенно очевидно, что при определении оптимальной области применения того или иного материала решающее значение приобретает проблема установления связи между химическим строением молекул и его макроскопическими физическими свойствами. Кроме того, если бы такую корреляционную связь удалось установить, то с учетом больших достижений предыдущих исследований в области как органической, так и неорганической химии, позволивших выработать определенные методологические приемы синтеза веществ с заданным молекулярным строением, в принципе можно было бы надеяться на получение веществ с требующимся в конкретном случае комплексом физических свойств. Сказанное выражает суть модного с недавнего времени понятия молекулярное конструирование . Тем не менее, следует принимать во внимание, что в случае полимерных материалов существует ряд серьезных препятствий для совместного развития чисто дедуктивных представлений о физических свойствах вещества, синтезированного из молекул данного строения, и реальных научных исследований.  [c.149]

    Если энергия связи ПАВ с металлом или с уже образовавшимися на металле хемосорбционным или оксидным слоем больще, чем энергия связи молекул ПАВ с молекулами среды, то на металле образуются адсорбционные и хемосорбционные пленки ПАВ. Энергия связи ПАВ с металлом зависит в равной степени как от химического строения, полярности и донорно-акцепторных свойств ПАВ, так и от свойств металла — знака и величины заряда на его поверхности, ее физического состояния. [c.208]

    Первый период ломки фундаментальных представлений связан с именем А. М. Бутлерова — создателя теории химического строения молекул. Введение понятия химического строения как определенной последовательности дискретных связей между атомами, объединенными в данную молекулу, оказалось исключительно плодотворным и предопределило на многие годы дальнейшее развитие органической химии. После дополнения стереохимическими представлениями классический вариант теории строения стал фактически учением о геометрии молекул и об определяющем- значении этой геометрии для понимания хил(иче-ских и физических свойств органических соединений. [c.6]

    Между атомами в молекулах низкомоле1сулярных органических соединений, в звеньях полимеров и между звеньями в цепях существуют химические (ковалентные) связи, относимые к сильному взаимодействию. Между молекулами низкомолекулярных соединений, между макромолекулами полимеров и между участками одной и той же цепи существует нехимическое взаимодействие (соответственно межмолекулярное и внутримолекулярное), не приводящее к образованию новых химических связей, - слабое взаимодействие. Это взаимодействие зависит от химического строения молекул, расстояния между молекулами и от их взаимного расположения. Нехимическое взаимодействие подразделяют на межмоле-кулярные силы и водородные связи. Оно определяет агрегатное и фазовое состояния и физические свойства вещества. [c.126]

    Измеряемые характеристики и величины в одних случаях необходимы для установления закономерностей, связывающих физические и химические свойства с химическим строением молекул, а в других — для оптимизации технологических процессов. [c.4]

    При стандартном методе исследования фиксируют температуру начала кипения (НК), объемы выкипания (в %) десятиградусных фракций, температуру конца кипения (КК), остаток и потери. Известно, что температуры кипения разветвленных углеводородов ниже температур кипения соответствующих им изомеров с прямой цепью. При этом чем компактнее строение молекулы, тем ниже температура кипения. Это означает, что в любой фракции могут содержаться углеводороды с разным числом атомов углерода и существенно различающимися физическими и химическими свойствами. [c.22]

    Кроме того, интерес представляет не только состав вещества и химическое строение его молекул, но практически все физико-химические свойства вещества, в свою очередь, связанные с химическим строением и способствующие его установлению. Изучение физических свойств веществ и молекул в методическом отношении представляет особый раздел науки, основанный на теории взаимодействия поля, излучения или потока частиц с исследуемым веществом, при котором проявляются те или иные свойства вещества и его молекул. [c.5]

    Определение физических свойств химических соединений имеет значение в первую очередь для их открытия и характеристики в целях их практического (актуального или потенциального) применения. Далее, физические свойства органических соединений все чаще и с ббльшим успехом применяются для установления их строения. Обычный, основной метод органической химии определения строения молекул основывается на химических превращениях веществ. Физические методы, вообще говоря, подтверждают результаты химического исследовапия и, кроме того, дают сведения о строении молекул, совершенно иного характера, чем те, которые можно получить при помощи химического метода. [c.83]

    В таких случаях на помощь химическим методам, применение которых всегда связано с более или менее глубокими изменениями в строении молекул, в качестве ценного дополнения приходят физические методы определения строения. Применение этих методов не вызывает изменения структуры молекул исследуемого вещества. При применении физических методов пользуются в первую очередь данными, полученными чисто эмпирическим пУтем в результате изучения физических свойств соединений, строение которых точно установлено химическим путем. Таким образом, накапливается обширный фактический материал эмпирического характера, который можно привлекать в отдельных случаях, когда химический метод оказывается неприменимым. Такие приемы ранее неоднократно использовались. В качестве примера можно привести установление строения лабильных аллилгалогенидов (т. I, стр. 300). Возникает ли сначала третичный или же первичный бромид при присоединении бромистого водорода к изопрену [c.7]

    Информацию о строении вещества можно получить, исследуя его физические и химические свойства. В частности, с помощью физических методов исследования определяют основные параметры молекул — межъядерные расстояния, валентные углы и геометрию молекул. [c.42]

    Ни одно физическое свойство не дает более точной информации о химическом строении углеводородов, чем спектр поглощения в инфракрасной области, особенно для простых алифатических соединений. Большинство полос поглощения возникает при резонансных вибрациях валентных связей и поэтому зависит от действительной инерции атомов и атомных групп в молекуле и сил между ними. В этой же области наблюдаются вращательные и вращательно-колебательные спектры, но они имеют меньшее значение [185]. Полосы, появляющиеся вследствие алифатических С—Н связей, особенно интересны, так как их частоты зависят от атомных весов атомов, с которыми связаны три другие валентности углерода [186—190]. [c.189]

    Химическое строение. Различие в химических свойствах используемых для получения мембран полимерных материалов может быть сведено к разнице в полярности молекул и их размеров. Полярность, которая с физической точки зрения характеризует неравномерность распределения электронных облаков, на химическом уровне количественно описывается такими показателями, как плотность заряда, дипольный момент и способность к образованию водородной связи. Хотя ионы и можно классифицировать как крайний случай полярных частиц, наиболее часто на практике их рассматривают отдельно. [c.65]

    Химическую модификацию определяют как направленное изменение свойств полимеров введением в состав макромолекул малого количества фрагментов иной природы. Физическая, или структурная, модификация--это направленное изменеиие физических (прежде всего механических) свойств полимеров, осуществляемое преобразованием их надмолекулярной структуры под влиянием физических воздействий. Химическое строение молекул ири физической модификации не изменяется, а при химической изменяется. Могут быть и смешанные случаи, так как в результате химических реакций в полимерах изменяется их физическая структура. [c.33]

    Мы ознакомились со строением простейших и некоторых не очень сложных молекул. Убедились, что молекулы отличаются исключительно большим разнообразием форм строения. Примечательным является то, что физические и химические свойства вещества зависят не только от химического сорта атомов, образующих данную молекулу, но и от того, как атомы расположены друг относительно друга внутри саЦой молекулы. Существование изомерии молекул и соединений включения предоставляет человеку неограниченные возможности получения новых веществ с необыкновенными технически важными свойствами. Выяснение строения молекул, участвующих в жизнедеятельных процессах, способствует пониманию жизни человека и животных. [c.151]

    Физическая химия изучает строение молекул хими-ческйх соедТГненийТ их химические свойства и процессы химического превращения в неразрывной связи и взаимной обусловленности с физическими свойствами веществ, физическими условиями протекания химических превращений, физическими явлениями, происходящими при этих превращениях. [c.5]

    Положение о том, что понимание химических и физических свойств белков требует знания пространственного строения молекул, впервые, по-видимому, было высказано К. Мейером и Г. Марком в 1930 г. Более того, они предприняли попытку установить прямую связь между некоторыми физическими свойствами белков и пространственной структурой, подобно тому, как это уже делалось в химии при определении зависимости между химическими свойствами и строением молекул. В частности, они предположили наличие непосредственной связи механического состояния специально приготовленных белковых препаратов при растяжении и сжатии с изменением молекулярной формы полипептидных цепей. Первыми объектами исследования пространственного строения с помощью рентгеноструктурного анализа стали фибриллярные белки, содержащие наряду с аморфной также упорядоченную часть, представляющую собой нечто вроде одномерного линейного кристалла Г. Герцог и У. Янеке, а позднее Р. Брилл получили в самом начале 1920-х годов рентгенограммы фиброина Шелка. Их интерпретация основывалась на предположении дикетопи-перазинового строения белка, что многими химиками было воспринято как [c.67]

    В сложных молекулах, в особенности в молекулах, содержащих атомы или группы атомов с различной электроотрицательностью, ие только различные, но и одноименные (С—Н С—С и т. д.) связи могут отличаться друг от друга по распределению электронной плотности, в частностгт по полярности, в зависимости от химического строения молекулы. В общем случае это ведет к полярности всей молекулы, физически проявляющейся в на.личии дипольного момента. В сложных молекулах одноименные связи могут различаться такн е и по химическим свойствам. Так, общеизвестно различие подвижности атомов водорода при альфа-, бета- и т. д. атомах углерода в иасыщенных карбоновых кислотах, нитросоединепиях, нитрилах, альдегидах, кстонах и др. [c.46]

    Переход от высокоэластического к стеклообразному состоянию при низкой температуре представляет собой явление, которое свойственно всем каучукам, вулканизованным и невулкани-зованным. Температура перехода, естественно, зависит от химического строения молекулы. В невулканизованном натуральном каучуке переход происходит при температуре около —70° С. Вулканизация повышает эту температуру на 10—15°, в зависимости от способа и степени вулканизации. Переход не влияет на структуру каучука, диффракционная картина рентгеновских лучей, например, остается той же самой, как и в области высокой эластичности. Но многие физические свойства, такие, как тепловое расширение, удельная теплоемкость и теплопроводность, под- [c.20]

    Однако эти тайны раскрывались постепенно, по мере накопления знаний, усовершенствования методов эксперимента и создания точной контрольной аппаратуры. Такие природные полимеры, как каучук, целлюлоза, были известны давно, однако химики раньше не знали еще в полной мере строения молекул этих полимеров и их химических свойств. Было известно, что все вещества состоят из молекул, а последние — из определенного числа тех или иных атомов. Утверждалось, что свойства веществ в основном зависят ог их химического состава. Однако к середине прошлого века уже накопилось достаточно наблюдений, которые позволили великому русскому химику А. М. Бутлерову создать теорию о связи химических и физических свойств веществ с химическим составом и главное со строением их молекул. А. М. Бутлеров изложил эту теорию па съезде немепких естествоиспытателей и врачей в городе Шпейере в 1861 г. Он блестяще доказал, что па свойства сложного вещества влияют не только количество и природа составляющих атомов, по главным образом химическое строение молекулы этого вещества. [c.7]

    Историю физической химии в XX веке нет возможности изложить в кратком очерке. Поэтому будет дана лишь обш,ая характеристика развития физической химии в XX веке. Если для XIX века было характерно изучение свойств веш,еств без учета структуры и свойств молекул, а также использование термодинамики, как основного теоретического метода, то в XX веке на первый план выступили исследования строения молекул и кристаллов и применение новых теоретических методов. Основываясь на крупнейших успехах физики в области строения атома и используя теоретические методы квантовой механики и статистической механики, а также новые экспериментальные методы (рентгеновский анализ, спектроскопия, масс-спектрометрия, магнитные методы и многие другие), физики и физико-хидшки добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.15]


Смотреть страницы где упоминается термин Физические свойства и химическое строение молекул: [c.188]    [c.306]    [c.86]    [c.286]    [c.17]    [c.355]   
Основные начала органической химии том 1 (1963) -- [ c.534 , c.548 ]




ПОИСК





Смотрите так же термины и статьи:

Молекула строение

Строение химическое

Физические н химические свойства

Физические свойства и строение молекул

Физические свойства молекул

Химическое строение и химические свойства

Химическое строение молекул связь с физическими свойствами



© 2025 chem21.info Реклама на сайте