Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипептидная цепь сборка

    Важнейшая особенность белковой цепи, определяющая существование необратимых флуктуаций и, следовательно, возможность спонтанного возникновения высокоорганизованной структуры из хаоса, заключена в специфической конформационной неоднородности природной аминокислотной последовательности. Можно утверждать, что суть рассматриваемого явления состоит в наличии четкой взаимообусловленности между химическим строением, конформационными свойствами и необратимыми флуктуациями. Гетерогенность аминокислотной последовательности ответственна за различие в конформационных возможностях ее отдельных участков, что, в свою очередь порождает термодинамическую неоднородность флуктуаций, дифференциацию их на обратимые равновесные и необратимые неравновесные. Сочетание последних и порядок их следования определяют содержание и направленность механизма быстрой и безошибочной самосборки белковой цепи. Отмеченная связь присуща только эволюционно отобранным аминокислотным последовательностям. В случае же гомогенных, регулярных или даже гетерогенных синтетических полипептидов со случайным порядком аминокислот тот же беспорядочный по своему характеру процесс не имеет развития и не выводит цепь из состояния статистического клубка. Сказанного, однако, недостаточно для объяснения высокой скорости сборки трехмерной структуры белка при его биосинтезе или ренатурации. Чтобы беспорядочно-поисковый механизм мог действительно привести к свертыванию цепи, селекция бифуркационных флуктуаций не должна представлять собой перебор возможных комбинаций всех случайных изменений целой полипептидной цепи, количество которых невероятно велико, и сборка структуры даже такого низкомолекулярного белка, как БПТИ, должна была бы продолжаться не менее 10 ° лет. [c.474]


    Существующие представления о принципах структурной организации белка и путях многостадийного процесса самосборки полипептидной цепи можно отнести к трем альтернативным точкам зрения. Каждой из них отвечает свой специфический набор экспериментальных и теоретических методов, свой особый подход к изучению этого уникального природного явления и своя возможность в достижении конечной цели - количественного описания механизма сборки и расчета координат атомов нативной трехмерной структуры и динамических конформационных свойств белковой молекулы по известной аминокислотной последовательности. Обсуждению современного состояния и перспектив развития трех направлений исследований структурной самоорганизации белка, условно названных эмпирическим, теоретическим (аЬ initio) и генетическим, уделено в этой книге основное внимание. [c.6]

    Антитело — это молекула, синтезируемая организмом животного в ответ на присутствие чужеродного вещества, называемого антигеном. Антитела представляют собой белки, известные как иммуноглобулины. Молекула любого иммуноглобулина состоит из двух тяжелых (Н-цепи) и двух легких (Е-цепи) полипептидных цепей (рис. 14.38). В ней различают константные (неизменные) и вариабельные (изменчивые) участки. Последние и распознают строго определенный антиген, структурно соответствующий им, как ключ замку, а проще говоря, — связывают его. Человеческий организм способен образовать примерно 100 млн. различных антител, распознающих практически любые чужеродные вещества, в том числе и те, с которыми мы никогда не сталкивались. Это возможно благодаря своего рода внутриклеточной перетасовке частей генов, кодирующих вариабельные области иммуноглобулинов (аналогично сборке разных конструкций из стандартного набора деталей). [c.175]

    Физическая теория пространственной организации белка, определяемая сформулированными выше принципами, является дальнейшим развитием рассмотренной ранее термодинамической теории. В нее привнесены отсутствующие у последней конкретные, детерминистические признаки структуры белка, связывающие конформационное поведение макроскопической системы со свойствами ее микроскопических составляющих. Термодинамическая теория является феноменологической. Она была призвана установить природу самоорганизации белка (и, действительно, установила, что сборка полипептидной цепи представляет собой статистико-детерминистический процесс), отнести рассматриваемое явление к адекватной его природе области естественнонаучных знаний (нелинейной неравновесной термодинамике) и дать качественно непротиворечивую трактовку всем важнейшим особенностям этого явления (спонтанному характеру, беспорядочно-поисковому механизму, высокой скорости и безошибочности). Физическая теория, в отличие от термодинамической, является не качественной, а количественной теорией, и должна послужить основой метода численного решения конформационной проблемы белка. Метод, опираясь на физическую модель, строится на поэтапном подходе и анализе конкретной белковой молекулы, нативная конформация которой предполагается самой предпочтительной по энергии, наиболее компактной и согласованной в отношении всех внутри- и межостаточных взаимодействий структурой. [c.106]


    В результате изучения кинетики ренатурации целого ряда белков стали известны некоторые детали процесса свертывания-развертывания полипептидной цепи. Однако ни в одном случае эта работа не была доведена до логического конца, т.е. до установления конкретного механизма сборки и его количественного структурного, термодинамического и кинетического описания как многоступенчатого, взаимообусловленного на всех своих стадиях процесса. Не получили объяснения побудительные мотивы ренатурации, определяющие скорость процесса и его безошибочность, и, самое главное, возможность спонтанного перераспределения энтропии, т.е. самопроизвольного возникновения порядка из беспорядка. Уже десятки лет прогресс в этой области в теоретическом плане сдерживается из-за отсутствия количественной информации о состоянии и конформационных возможностях белковой цепи на разных стадиях ее самоорганизации и [c.471]

    Итак, с белками далеко не все ясно. Ведь чтобы расшифровать до конца структуру белка, надо знать, помимо всего, форму полипептидных цепей белковой молекулы, то есть, иначе говоря, понять, каким способом уложена эта цепь. Здесь метод сборки-разборки не пригоден. Каким же образом удается рассмотреть форму белковой молекулы и способ укладки полипептидных цепей, входящих в ее состав  [c.49]

    Итак, завершено рассмотрение опытных данных Крейтона о механизме сборки трипсинового ингибитора. Оно основывалось на неравновесной термодинамической модели, физической теории структурной самоорганизации и конкретных результатах априорного расчета конформационных возможностей полипептидной цепи и геометрии нативной трехмерной структуры белка. Общим итогом анализа является адекватное естественному процессу ренатурации представление всего пути свертывания белка -от состояния статистического клубка до строго детерминированной нативной конформации макромолекулы. К принципиальным результатам рассмотрения следует, по-видимому, отнести выявление причин и количественное теоретическое обоснование возможности спонтанной, быстрой и безошибочной сборки флуктуирующей беспорядочным образом белковой цепи. [c.482]

    Исходя из этих фактов (а также из характера генетической регуляции синтеза ферментов, о чем пойдет речь в гл. XX), Жакоб и Моно в 1961 i. высказали предположение, что гипотеза один ген — одна рибосома — один белок неверна и что рибосомы отнюдь не наделены от природы способностью к синтезу определенных полипептидных цепей. Они считали, что рибосомная РНК не может служить непосредственной матрицей для упорядоченной сборки аминокислот, и высказали предположение, что нуклеотидная последовательность каждого гена транскрибируется в соответствующую информационную (матричную) РНК. [c.391]

    Рядом с этим кодоном свое место занимает другая т-РНК с соответствующим антикодоном. Между обеими аминокислотами образуется пептидная связь. Затем и-РНК перемещается в полисоме на участок одного кодона и за второй аминокислотой на новый кодон поступает соответствующая третья аминокислота и т. д. Так все кодоны матрицы протягиваются через участок сборки аминокислот в рибосоме, в результате образуется соответствующая матрице полипептидная цепь. [c.45]

    Эти опыты показывают, что программа самосборки белка закодирована в его первичной структуре. По всей вероятности, важное значение при ренатурации белка имеет образование ядер , т. е. небольших участков упорядоченной вторичной структуры (стадия нуклеации). За этим сравнительно медленным процессом следует быстрое сворачивание цепи в нативную структуру. На первых этапах ренатурации белков, в поддержании нативной конформации которых участвуют дисульфидные мостики, образуются промежуточные производные с правильными и неправильными дисульфидными связями. В ряде случаев удавалось останавливать процесс ренатурации на определенных стадиях и выделять такие частично свернутые формы. Поскольку в целом сборка белка является достаточно быстрым процессом, можно сделать вывод о том, что природа не перебирает все возможные комбинации в очередности замыкания дисульфидных мостиков (при 4 S—S-связях их 105, а при 5 — уже 945), а сворачивание полипептидной цепи идет по ограниченному числу направлений и приводит к конформации, характеризующейся минимальной свободной энергией. [c.105]

    Как видно из рис. 100, , сборка активного полимерного миозина из субъединиц (состоящих в свою очередь из 5 полипептидных цепей) также чувствительна к давлению. В отличие от полимеризованного актина (Р-актина) полимер миозина стабилизирован главным образом полярными взаимодействиями. При образовании водородных связей объем возрастает примерно на 3—7 см /моль. В этом случае увеличение объема при сборке полимера будет достигать около 300 см /моль — столь большой величины, что высокие давления должны будут сильно благоприятствовать мономерному состоянию. Следовательно, нити миозина, образующиеся при большом давлении, должны быть короче обычного, что опять-таки наглядно подтверждается при прямом электронно-микроскопическом исследовании мышц придонных рыб. [c.319]


    Синтезируемые на молекулах ДНК (на ядерных структурах) информационные РНК также поступают в рибосомы. Сборка полипептидных цепей происходит в рибосомах на молекулах и-РНК- Процесс этот, по-видимому, происходит следующим образом. Аминоацил-РНК располагается на и-РНК, удерживаясь за счет водородных связей, а аминогруппа аминоацильного остатка связывается с полинуклеотидной цепью и-РНК и является как бы якорем . Затем к и-РНК за счет водородных связей присоединяется вторая аминоацил-РНК, ее аминокислотный остаток связывается с первым, а первая молекула т-РНК отщепляется  [c.523]

    В двух предыдущих главах было показано, как функционирует ансамбль клеточных белков, делая клетку тем, что она есть, —машиной, построенной из высокоспецифичных структурных компонентов и ферментов, осуществляющих сложную сеть метаболических реакций. Теперь можно снова подойти к основной проблеме самовоспроизведения клетки, поставив вопрос по-новому каким образом за время генерации происходит удвоение всего аппарата белков клетки, так что каждая из двух дочерних клеток, образующихся при делении родительской клетки, оказывается наделенной своим собственным полным набором ферментов В предыдущей главе был сформулирован основной закон, согласно которому первичная структура полностью определяет вторичную, третичную и четвертичную структуру белка. Исходя из этого закона, вопрос о самовоспроизведении клетки можно свести к следующему вопросу каким образом двадцать аминокислот собираются в определенную последовательность, составляющую первичную структуру любого из одной-двух тысяч различных молекул ферментов Сами аминокислотные строительные блоки синтезируются, конечно, в ходе метаболических путей, примеры которых мы рассматривали в гл. П1. Нетрудно представить, что реакция дегидрирования, благодаря которой аминокислоты соединяются пептидными связями в полипептидные цепи, катализируется одним или несколькими специфическими ферментами клетки. Однако при попытках понять, каким образом на каждой стадии процесса сборки определенной полипептидной цепи из двадцати доступных аминокислот выбирается одна и только одна аминокислота, мы сразу же сталкиваемся с трудностями. [c.112]

    Допустим, что упорядоченную сборку аминокислот осуществляет другой, специфический фермент, который и обеспечивает совершенно определенное чередование аминокислотных остатков в данной полипептидной цепи. Тогда для каждого отдельного белка сданной первичной структурой должен существовать свой специфический фермент, который знает , как собирать полипептидную цепь этого конкретного вида белка. Но если этот фермент сам является белком со специфической последовательностью аминокислот, то становится очевидным, что вместо ответа на интересующий нас вопрос мы приходим просто к парадоксу. Очевидно, что постулирование указанного фермента требует постулирования еще одного аналогичного фермента, который управляет образованием первого. Для образования этого второго фермента в свою очередь нужен третий такой фермент и так далее до бесконечности. [c.112]

    Очень низкая частота возникновения мутаций Str -Str объясняется, по-видимому, причиной, в корне противоположной рассмотренным причинам молчащих мутаций. Ранее указывалось, что гены, при мутировании которых возникает фенотип Str , контролируют образование компонентов, обеспечивающих синтез белков, и, следовательно, контролируют незаменимую функцию в том смысле, как это обсуждалось в предыдущей главе. Легко можно понять, что любая мутация, приводящая к утрате незаменимой функции, является летальной. Клетка, которая не может нормально осуществлять процесс сборки полипептидных цепей, неизбежно погибнет, и ее нельзя спасти добавлением в среду каких-либо факторов роста. Поэтому, чтобы клетка приобрела мутантный признак Str , требуется не утрата, а изменение функции белка, контролируемого затронутым мутацией геном. Это изменение белка должно не только сохранить незаменимую функцию, но и сделать ее нечувствительной к воздействию стрептомицина, который подавляет эту функцию в клетках дикого типа. По-видимому, к таким изменениям третичной и четвертичной структуры, которые удовлетворяют этому жесткому функциональному критерию, приводят лишь очень немногие из всех возможных изменений первичной структуры полипептидной цепи. Поэтому не удивительно, что частота возникновения мутаций, изменяющих функцию, намного ниже частоты возникновения мутаций, приводящих к утрате функции,. i [c.153]

    Анализ вопроса этот автор начинает с рассмотрения возможных путей образования высокомолекулярных последовательностей — носителей информации . Роль последовательностей могут выполнять, например, остатки аминокислот, соединенные в полипептидные цепи. И белки и нуклеиновые кислоты — носители кода самоорганизация и эволюция должна начаться на уровне са-мовоспроизводящегося кода. Обсуждая вопрос о процессах сборки и распада поли.меров, протекающих в ящике конечного объема, через стенки которого могут втекать и вытекать мономерные единицы (высоко- и низкоэнергетические), Эйген приходит к выводу, что при oт yт твии самоинструктирования ожидаемое значение числа цепей с любой данной последовательностью практически равно нулю. Необходимо придать динамические свойства носителям информации , а в теории отбора должен фигурировать параметр, выражающий селективное преимущество через молекулярные свойства. [c.383]

    Первичные структуры а-, Р-, у-, 5-, е- и -полипептидных цепей Г. человека, а также мн. др. глобиновых цепей разл. происхождения известны. Гены, кодирующие а-глобиновые цепи Г. человека, сцеплены и расположены в последовательности 42-4 - 2-а1 на хромосоме 16 (цифры-номера дуплицированных генов) группа генов, кодирующих др. полипептидные цепи, также непосредственно примыкающие один к другому (8-72-71 -8-Р), локализована на хромосоме 11. Первичная структура а- и не а-глобиновых генов человека известна. Для каждого из них установлено наличие двух нитронов (отрезков ДНК, прерывающих кодирующие участки,-экзоны) и больших некодирующих участков, находящихся на флангах генов. Биосинтез гема, а- и р-глоби-новых цепей, а также сборка тетрамерных молекул НЬА осуществляется в клетках эритроцитарного ряда и практически завершается к моменту выхода зрелых эритроцитов (их продолжительность жизни у человека составляет 120-130 дней) из костного мозга в кровяное русло. [c.516]

    Неравновесная модель свертывания. Начнем обсуждение модели с определения минимального фазового и компонентного состава системы, обеспечивающей спонтанное протекание процесса в изолированных условиях. Не нарушая общности модели свертывания, во всяком случае, применительно к условиям in vitro, будем считать, что объектом рассмотрения является мономерный белок. Имеющиеся опытные данные о структурной самоорганизации белков позволяют представить укладку линейной аминокислотной последовательности в трехмерную структуру как внутримолекулярный процесс, который полностью определяется проявляющимися в соответствующих условиях свойствами единичной полипептидной цепи. Иными словами, свертывание не зависит от концентрации белка, и поэтому модель может включать лишь одну белковую молекулу. В систему должна входить также водная фаза. Для предварительного феноменологического описания процесса не требуется учет конкретных специфических свойств среды, обусловливающих реализацию заложенной в белковой цепи потенции к самоорганизации. Пока будем считать водное окружение гомогенным, обладающим необходимыми для сборки белка свойствами. [c.93]

    Для рассматриваемой модели это условие на первый взгляд выглядит нереальным, так как число возможных комбинаций случайных и беспорядочных конформационных флуктуаций белковой цепи невероятно велико, и появление среди них бифуркационных флуктуаций как будто бы ничтожно мало. Перебор всех микроскопических состояний даже у самых низкомолекулярных белков занял бы не менее лет. Противоречие между характером описываемого процесса и наблюдаемой продолжительностью свертывания снимается, если предположить, что актуальные на первом этапе сборки белка бифуркационные флуктуации возникают независимо и одновременно на разных участках полипептидной цепи. Иными словами, начало пространственного структурирования белка представляется рядом параллельно идущих процессов формообразования как бы не связанных друг с другом олигопептидных фрагментов молекулы. Чтобы это действительно могло происходить при вполне определенном сочетании необратимых флуктуаций, следует допустить возможность образования конформационно достаточно жестких структур только за счет взаимодействий остатков в пределах сравнительно коротких участков белковой цепи. При количестве возможных сочетаний низкоэнергетических флуктуаций порядка 10" (п - число аминокислотных остатков) и продолжительности одной флуктуации с время вероятного появления локальной структуры при беспорядочно-поисковом механизме ориентировочно равно 10> -14 Следовательно, для фрагмента белковой цепи, например с и = 12, время сборки составит всего 10 с. Чтобы процессы структурирования разных участков аминокислотной последовательности могли идти параллельно и независимо друг от друга, требуется также предположить чередование в белковой цепи конформационно жестких и лабильных фрагментов. [c.97]

    Одно из главных положений теории пространственной организации белков состоит в предположении о наличии в нативных конформациях макромолекул согласованности ближних, средних и дальних взаимодействий (см. часть II). На этом утверждении строится поэтапный подход к априорному предсказанию трехмерных структур природных полипептидов, поскольку только при гармонии в белковой глобуле всех внутриостаточных и межостаточных невалентных взаимодействий атомов становится возможным и оправданным разделение конформационной проблемы белка на ряд связанных между собой менее громоздких проблем и их последовательное решение. Это же положение отражает суть термодинамической бифуркационной теории свертывания белковой цепи, объясняющей возможность, направленность и предел протекания по беспорядочно-поисковому механизму спонтанного, нелинейного неравновесного процесса сборки высокоорганизованной пространственной структуры из флуктуирующей полипептидной цепи. [c.413]

    Это, по-видимому, не случайно, поскольку большую вероятность ( казаться сближенными имеют остатки ys, обладающие меньшим числом пеней свободы, т.е. принадлежащие жестким структурам, f . На следующем этапе происходит образование ди-SS-продуктов. Здесь (роявляется взаимообусловленность между конформационными состоя- дими значительно большего количества звеньев полипептидной цепи в структурированию начинают подключаться дальние взаимодействия, (ост длины белковых участков, беспорядочная флуктуация которых в конечном счете приводит к созданию новых конформационных состояний, (ущественным образом, однако, не может сказаться на продолжитель-юсти случайного поиска бифуркационных флуктуаций этого этапа сборки. Одновременно с увеличением размеров свертывающихся пептидных участков резко сокращается число их конформационных степеней свободы. Из первоначального массива переменных денатурированной цепи БПТИ исключается подавляющее большинство параметров конформа-ЩИОННО жестких участков 1-9, 22-31 и 48-56, а таюке заметно ограни-Яиваются области допустимых изменений параметров промежуточных лабильных участков. [c.477]

    Механизм структурной самоорганизации белка - это спонтанная трансформация случайных конформационных отклонений в строго направлен- ую и детерминирующую процесс последовательность событий. Автоматизм процесса гарантирован возможностью осуществления на любой ста-Кии сборки белка перебора всех комбинаций случайных флуктуаций, Жлючающих необратимые, бифуркационные флуктуации, В самом начале ренатурации механизм свертывания полипептидной цепи представляет [c.479]

    При обсуждении структуры полипептидов в гл. IV было показано, что на одном конце цепи имеется свободная -карбоксильная группа, а па другом — свободная а-аминогруппа. Это обусловлено тем, что в отличие от остальных аминокислот, находящихся внутри цепи и соединенных со своими соседями двумя пептидными связями, каждая из карбокси- и аминоконцевых аминокислот присоединяется к своему единственному соседу только одной пептидной связью. Проще всего предположить, что при сборке аминокислот в полипептидную цепь ее рост происходит с одного конца путем последовательного присоединения аминокислот одня за другой. Когда, наконец, соединится необходимое число аминокислот, рост цепи прекращается терминация синтеза) и завершенная полипептидная цепь освобождается из рибосомы, с тем чтобы выполнить ту фу нкцно-нальную роль в жизни клетки, к которой она предназначена. До пустим теперь, что в момент времени /х мы добавим к клеточной культуре меченные Н аминокислоты, а затем через короткие промежутки в м оменты i , tз и т. д. определим в завершенных полипептидных цепях, уже отделившихся от рибосом, появление этих аминокислот. Тогда, если справедлив постулированный механизм роста цепи, получатся результаты, схематически изображенные на фиг. 201. [c.406]

    В последующей работе Н. Гё и Г. Абе [60] детально рассмотрели статистико-механическую модель локальных структур, идея которой уже прослеживалась в изложенных только что исследованиях Н. Гё и Г. Такетоми [57-59]. Под локальной структурой понимается конформация участка полипептидной цепи, которая образуется на определенной стадии процесса свертывания и которая без существенных изменений входит в нативную конформацию белка. В отличие от общепринятого представления о том, что сборка полипептидной цепи начинается с образования вторичных структур, и составляющего основное содержание процесса, а также инициирующего его последующее развитие, Гё и Абе априори не отдают предпочтения ни одной локальной структуре, регулярной или нерегулярной. Наличие а-спиралей, Р-складчатых листов, изгибов и прочих образований оценивается их статистическими вкладами и статистико-механическим поведением всей белковой молекулы посредством парциальной функции. В этой функции не учтен вклад стабилизирующих контактов между локальными структурами на отдельных участках цепи. Отсюда и название анализируемого представления о процессе белкового свертывания как модели невзаимодействующих локальных структур По существу, она аналогична бусиничной модели без подвесок Кунтца и соавт. [32], только в данном случае Гё и Абе представляют белковую цепь не в виде отдельных аминокислотных остатков, аппроксимированных жесткими сферами, а в виде целых конформационно жестких образований, каждое из которых включает непрерывный участок аминокислотной последовательности. Предположение об отсутствии взаимодействий между ними позволяет рассчитать парциальную функцию модели. Но даже в этом случае непременными условиями являются знание нативной конформации, которая обязательно должна быть однодоменной, и предположение [c.492]

    При анализе свертывания белковой цепи на основе концепции регулярных вторичных структур не учитываются экспериментальные данные о реальном механизме сборки белка. Характерной иллюстрацией такого рода моделирования может служить работа О.Б. Птицына и A.A. Рашина [113], посвященная сборке молекулы апомиоглобина. Авторы использовали модель полипептидной цепи, в которой еще до начала манипуляции с ней были заданы в виде цилиндров все а-спирали наблюдаемой нативной конформации белка. Задача, следовательно, свелась к тому, чтобы, зная реальную структуру молекулы, упаковать заданные цилиндры различными способами и оценить энергию их взаимодействий. Расчет велся вручную, поэтому не были учтены все возможные структурные варианты (а их миллионы). Найденное взаимное расположение спиралей, имеющее минимальную энергию, совпало с нативной конформацией апомиоглобина. Однако здесь и речи не может быть о том, что в результате данного исследования стала ясна функция дальних взаимодействий в структурной организации белка, поскольку в состав наперед заданных а-спиралей входит не менее 75% остатков аминокислотной последовательности, а в этом случае была рассмотрена ничтожная часть возможных структурных вариантов. [c.503]

    Предлагаемая автором модель белкового свертывания не может считаться общей, так как не только не затрагивает фибриллярных белков, но и среди глобулярных имеет отношение только к небольшой группе белков, состоящих преимущественно из а-спиралей и Р-структур, образующих супервторичные структуры. Стабилизация последних, как полагает Пти-цьш, не определяется конкретной аминокислотной последовательностью, а представляет собой некий интегрально-статистический эффект, чувствительный лишь к общей контактной гидрофобной поверхности. Оставляя это положение без аргументации, автор формулирует "общую гипотезу направленного механизма белкового свертывания", суть которой заключается в предположении, что "узнавание регулярш,1х сегментов определяется не деталями аминокислотной последовательности, а взаимной локализацией этих сегментов в линейной полипептидной цепи" [140. С. 198]. Постулировав, по существу, независимость супервторнчных структур от химического строения белков, Птицын тем самым свел проблему спонтанной сборки нативных конформаций к выработке геометрических критериев самоорганизации регулярных сегментов. Таким образом, "общая физическая модель" белкового свертывания оказалась не только не общей, но и не физической. [c.504]

    Развитие и размножение живых организмов сопровождается синтезом de novo большого набора белков и, следовательно, полипептидов, присущих данному организму. Это означает, что должны быть механизмы, которые обеспечивают синтез белков со строго определенным порядком pa пoJЮжeния аминокислот. Теоретически нельзя исключить, что белок может управлять сборкой аминокислот в полипептидные цепи с аминокислотной последовательностью, точно такой же, как и в данном белке. Однако нет ни экспериментальных данных, ни физикохимических аргументов, свидетельствующих в пользу существования такого механизма. Все живые организмы содержат в качестве обязательных компонентов другой тип полимерных молекул — нуклеиновые кислоты, которые содержат информацию об аминокислотной последовательности всего набора белковых молекул, присущих данному организму. [c.17]

    На ранних этапах исследований и обсуждений путей построения новых молекул ДНК и РНК по информатщи, содержащейся в последовательности нуклеотидов ДНК, а затем и построения новых полипептидных цепей по информации, содержащейся в молекулах информационной РНК, эти процессы сравнивали с получением отпечатков с типографских матриц. Поэтому запрограммированный с помощью нуклеиновых кислот процесс сборки новых цепей биополимеров называют матричным биосинтезом, а сами молекулы нуклеиновых кислот, используемые как программы в матричном биосинтезе,— матрицами. Как будет видно при рассмотрении конкретных биохимических механизмов биосинтеза белков и нуклеиновых кислот, этот термин не вполне удачен. [c.162]

    О последней стадии синтеза белка — сборке белковой молекулы на рибосомах — предстоит еще выяснить очень многое. Информационная РНК, по-видимому, стимулирует агрегацию 70 5-рибосом. Эксперименты с введением меченых аминокислот в ретикулоциты кролика показывают, что для синтеза полипептидной цепи гемоглобина, происходящего последовательно в линейном порядке, начиная с аминного конца цепи, требуется 1—2 мин. Многие детали этой и других стадий синтеза белка еще неизвестны. Исследования этой сложной проблемы развиваются очень интенсивно, и мы привели здесь лищь беглый обзор полученных к настоящему времени результатов. [c.375]

    На коллоквиуме по иммунохимии в Обществе физиологической химии профессор Эйген высказал предположение, что различие между селективным и инструктивным — это всего лишь вопрос уровня. На низшем, молекулярном уровне, несомненно, безраздельно господствует принцип селективности, т. е. отбора из имеющегося в наличии. И образование полипептидной цепи из активированных аминокислот тоже основано в конечном счете на механизме отбора — при этом отбираются молекулы тРНК, нагруженные правильными аминокислотами. Однако уже сборка аминокислот в определенные закодированные последовательности (т. е. в единицы более высокого порядка) может протекать только на основе принципа инструктивности. Тогда это было бы нечто вроде полуинструктив-ного механизма. [c.352]

    Таким образом, биосинтез церулоплазмина, вероятно, происходит в такой последовательности синтез нескольких полипептидных цепей, их сборка, присоединение полисахаридов и, наконец включение меди. Недавно было установлено, что при дефиците меди в плазме крыс присутствует апоцерулоплазмин, который обнаруживается иммунохимическими методами [76]. Он был также обнаружен в сыворотке крови здоровых людей и людей, страдающих болезнью Вильсона, у которых было отмечено пониженное содержание церулоплазмина, [77, 78]. Химическая природа апоцерулоплазмина и его физиологическая роль пока изучены слабо. [c.374]

    Поэтому парадокс фермент не может делать фермент приводит к следующему выводу клетки обязаны своими признаками тому, что они обладают самовоспроизводящимися информационными элементами, которые и управляют синтезом ферментов. Однако ранее было показано, что признаками клетки управляют единицы наследственности, или гены. Следовательно, мы можем отождествить эти информационные элементы с генами. Иными словами, на поставленный в гл. I вопрос Каким образом гены ухитряются управлять специфическими физиологическими процессами клетки со своего ядерного трона можно ответить так гены управляют сборкой аминокислот в полипептидные цепи с данной первичной структурой. Увы, этот довод а priori оказалось возможным привести лишь в 50-х годах, когда уже давно было очевидно из самых разных предпосылок, что между генами и синтезом ферментов существует связь. Так, лишь полвека спустя после повторного открытия статьи Менделя было предсказано существование генов на основе данных о структуре и синтезе белков. Не следует умалять теоретический интерес этого предсказания , хотя оно и было ретроспективным. До того как был выдвинут этот аргумент, концепция гена неизбежно зависела от различия в признаках. Теперь она освободилась от этой зависимости. Представить себе менделевский ген можно было, только исходя из результатов опытов по скрещиванию двух различных аллельных вариантов, например гладких и морщинистых сем 1Н. Существование же гена как детерминанта белковой структуры логически вытекает уже из самого факта существования полипептидной цепи с данной аминокислотной последовательностью. [c.113]

    Исходя из гипотезы адаптора, процесс сборки аминокислот можно представить следующим образом перед включением в растущую цепь каждая молекула аминокислот снабжается нуклеотидным адаптором, содержащим нуклеотидный триплет, или антикодон, комплементарный по своей нуклеотидной последовательности тому триплету, или кодону, которы-й кодирует соответствующую аминокислоту в матричной РНК. Затем комплексы аминокислот с нуклеотидами диффундируют к рибосоме, где попадают на положенные им места на матрице за счет образования водородных связей между комплементарными пуринами и пиримидинами молекул адаптора и мРНК. После того как аминокислотные остатки выстроились таким образом в правильном порядке вдоль матричной РНК, они соединяются друг с другом пептидными связями с помощью такой химической перестройки, при которой одновременно происходит освобождение аминокислоты из связи с нуклеотидным адаптором и соединение с растущей полипептидной цепью. [c.415]


Смотреть страницы где упоминается термин Полипептидная цепь сборка: [c.218]    [c.469]    [c.473]    [c.479]    [c.495]    [c.500]    [c.152]    [c.96]    [c.38]    [c.424]    [c.383]    [c.5]    [c.101]    [c.117]    [c.412]    [c.412]    [c.412]    [c.420]   
Молекулярная генетика (1974) -- [ c.112 , c.113 , c.390 , c.412 , c.415 ]




ПОИСК





Смотрите так же термины и статьи:

Полипептидные цепи

Сборка

Сборка цепи



© 2025 chem21.info Реклама на сайте