Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеотидная последовательность свойства ДНК

Рис. 15.4. Изменение разбивки считываемой последовательности на триплеты в результате мутации со сдвигом рамки . Бактериофаг Т4 способен образовывать лизоцим. Этот фермент кодируется геном фага. Вверху представлен отрезок нормальной нуклеотидной последовательности (фаг дикого типа) и указаны соответствующие аминокислоты, Внизу приведена нуклеотидная последовательность двойного мутанта, полученного из дикого типа в результате двукратной обработки профлавином. Нуклеотид А во втором триплете утрачен, и начиная с этого места триплеты считываются неправильно ( рамка считывания сдвинута). В результате включения О в конце пятого неверного триплета в дальнейшем восстанавливается правильный порядок считывания. Таким образом, нуклеотидные последовательности двойного мутанта и дикого типа различны только на участке от второго до пятого триплета включительно. Если кодируемые этими триплетами аминокислоты не существенны для функции данного белка, то вторая мутация восстанавливает свойства (фенотип) дикого типа (генетическая супрессия). Рис. 15.4. Изменение разбивки считываемой последовательности на триплеты в <a href="/info/1355385">результате мутации</a> со <a href="/info/101523">сдвигом рамки</a> . Бактериофаг Т4 способен образовывать лизоцим. Этот <a href="/info/1394523">фермент кодируется геном</a> фага. Вверху представлен отрезок нормальной <a href="/info/98217">нуклеотидной последовательности</a> (фаг <a href="/info/700379">дикого типа</a>) и указаны <a href="/info/166527">соответствующие аминокислоты</a>, Внизу приведена <a href="/info/1388569">нуклеотидная последовательность двойного</a> мутанта, полученного из <a href="/info/700379">дикого типа</a> в результате двукратной обработки профлавином. Нуклеотид А во втором триплете утрачен, и начиная с <a href="/info/436023">этого места</a> <a href="/info/1868698">триплеты считываются</a> неправильно ( <a href="/info/510489">рамка считывания</a> сдвинута). В <a href="/info/1320773">результате включения</a> О в конце пятого неверного триплета в дальнейшем восстанавливается правильный порядок считывания. <a href="/info/461013">Таким образом</a>, <a href="/info/1388569">нуклеотидные последовательности двойного</a> мутанта и <a href="/info/700379">дикого типа</a> различны только на участке от второго до пятого триплета включительно. Если кодируемые этими <a href="/info/1409270">триплетами аминокислоты</a> не существенны для <a href="/info/1705635">функции данного</a> белка, то вторая <a href="/info/106064">мутация восстанавливает</a> свойства (фенотип) <a href="/info/700379">дикого типа</a> (генетическая супрессия).

    Молекулярная биотехнология — это увлекательнейшая область научных исследований, с появлением которой произошел настоящий переворот во взаимоотношениях человека с живой природой. В ее основе лежит перенос единиц наследственности (генов) из одного организма в другой, осуш ествляемый методами генной инженерии (технология рекомбинантных ДНК). В большинстве случаев целью такого переноса является создание нового продукта или получение уже известного продукта в промышленных масштабах. В ч. I мы познакомим читателя с концепциями молекулярной биотехнологии и теми микроорганизмами, которые в ней используются, с основами молекулярной биологии и методологией рекомбинантных ДНК. Будут описаны такие методы, как химический синтез генов, полимеразная цепная реакция (ПЦР), определение нуклеотидной последовательности (секвенирование) ДНК. Помимо успешного клонирования нужного гена очень важно обеспечить его правильное функционирование в организме нового хозяина, поэтому мы остановимся также на способах оптимизации работы клонированных генов в про- и эукариотических системах. И наконец, мы рассмотрим, как можно улучшить свойства конечных продуктов, модифицируя клонированные гены путем введения в них специфических нуклеотидных замен (мутагенез in vitro). В целом материал, изложенный в первой части, служит фундаментом, который позволяет понять различные аспекты конкретных применений молекулярной биотехнологии. [c.13]

    Информация о всем многообразии свойств организма заключена в его генетическом материале. Так, патогенность бактерий определяется наличием у них специфического гена или набора генов, а наследственное генетическое заболевание возникает в результате повреждения определенного гена. Сегмент ДНК, детерминирующий данный биологический признак, имеет строго определенную нуклеотидную последовательность и может служить диагностическим маркером. [c.187]

    ДНК-зонды применяют для поиска родственных генов в реакциях гибридизацрш с РНК — для выявления экспрессии данного гена в различных клетках. Для вьывления молекул нуклеиновых кислот, комплементарных всему зонду (или его участку), ДНК-зонды часто сочетают с методом гель-электрофореза, что позволяет получать информацию о размерах гибридизируемых молекул ДНК. Эффективное использование современных приборов, способных автоматически синтезировать любые нуклеотидные последовательности за короткий промежуток времени, дало возможность перестраивать гены, что представляет собой один из важных аспектов генной инженерии. Обмен генами, а также введение в клетку гена другого вида организма осуществляют посредством генетической рекомбинации in vitro. Этот подход был разработан на бактериях, в частности на Е. соИ. Он основан на важном свойстве ДНК — способности к перестройкам, изменяющим комбинацию генов в геноме и их экспрессию. Такая уникальная способность ДНК позволяет приспосабливаться данному виду к изменяющейся среде. Генетическую рекомбинацию подразделяют на два больших класса общую рекомбинацию и сайт-специфическую рекомбинацию. В процессе общей рекомбинации генетический обмен в ДНК происходит между гомологичными нуклеотидными последовательностями, например между двумя копиями одной и той же хромосомы в процессе мейоза (кроссинговера), или при скрещивании и перегруппировке генов у бактерий. [c.112]


    Далее, все клеточные РНК, т. е. два вида рибосомной РНК и все виды S-PHK, видимо, должны быть комплементарны каким-то участкам гомологичной ДНК. Отсюда следует вывод о наличии в ДНК специфических цистронов для синтеза этих различных видов РНК, которые, таким образом, представляют собой не промежуточные, а конечные продукты генов, ибо сами они не детерминируют уже никаких других молекул. Мы вправе, следовательно, сказать, что комплементарность но отношению к определенным нуклеотидным последовательностям ДНК не является специфическим свойством одной только иг-РНК. [c.505]

    Такое предположение подтверждается экспериментальными данными. Так, например, было показано, что РНК разных штаммов (разновидностей) вирусов характеризуется различной нуклеотидной последовательностью. С этим, очевидно, в первую очередь и связаны те различные биологические свойства, которые присущи тому пли иному штамму вируса. [c.53]

    В генетической инженерии с целью получения белков в достаточных количествах и с заданными свойствами (например, для генотерапии наследственных и соматических болезней) широкое применение получили эндонуклеазы рестриктазы, катализирующие расщепление молекулы двухцепочечной ДНК по специфическим нуклеотидным последовательностям внутри цепи. Рестриктазы узнают определенные 4-7-членные последовательности, вызывая, таким образом, разрывы в определенных сайтах цепи ДНК. При этом образуются не случайные последовательности, а фрагменты ДНК строго определенной структуры с липкими концами (рекомбинантные ДНК), используемые далее для конструирования гибридных молекул и получения генно-инженерной, биотехнологической продукции (например, инсулина, гормона роста, интерферона, вакцин против вируса гепатита В, СПИДа и др.). [c.481]

    Очевидно, недостаточно полная информация, которую дает даже комплекс всех доступных исследователю фенотипических свойств, приводит к необходимости подкреплять характеристику по физиологическим и другим свойствам бактерий данными о структуре их ДНК. Поскольку ДНК представляет собой наследственный материал клетки, можно полагать, что подобный подход наиболее надежно способствует приближению к естественной классификации бактерий. Однако изучение нуклеотидного состава ДНК явилось лишь самым начальным этапом в упорядочении систематики бактерий на основе строения генома. Для ее дальнейшего усовершенствования необходимо более глубокое изучение строения ДНК и в частности нуклеотидной последовательности. О сходстве нуклеотидных последовательностей ДНК дает возможность судить метод молекулярной гибридизации ДНК, уже нашедший достаточно широкое применение в современных исследованиях. [c.79]

    Проблема внутриклеточной регуляции биосинтеза белков и нуклеиновых кислот, развивающаяся в последние годы, быстро стала одним из важнейших направлений в исследованиях. С развитием науки становится более конкретным представление о том, что специфическая нуклеотидная последовательность молекулы ДНК определяет структурную и биологическую специфичность синтезируемых в клетке белков. Специфическая структура ДНК обеспечивает точную генетическую (наследственную) передачу информации из поколения в поколение, от клетки к клетке. От ДНК эта информация в процессе жизнедеятельности каждой клетки передается через РНК белкам, а белки обусловливают в конечном счете все биологические свойства. В настоящее время вскрываются конкретные формы записи наследственной информации в цепях ДНК и механизмы переноса этой информации в места белкового синтеза через информационную РНК в рибосомы. Выясняются ранее неизвестные механизмы индукции и репрессии ряда белков в клетках. Все эти успехи являются результатом совместных усилий представителей многих наук — химии, генетики, цитологии, биофизики, биохимии, эмбриологии и т. п. Поэтому схватить вопросы биосинтеза белка и механизмы регуляции во всей их широте и многообразии чрезвычайно трудная задача. [c.294]

    По нуклеотидной последовательности сателлитной ДНК мы можем воссоздать картину ее эволюции и объяснить присущие ей в настоящее время свойства. Модель, демонстрирующая возможные этапы такой эволюции, приведена на рис. 24.8. [c.304]

    На основании сравнения последовательностей разных промоторов выведена каноническая последовательность промотора, в которой представлены наиболее часто встречающиеся в каждом положении нуклеотиды. Каноническая последовательность участка —10 — ТАТААТ (эта последовательность называется также блоком Приб-нова), участки —35 — TTGA A (при рассмотрении промоторов обычно приводят последовательность только той нити ДНК, которая в транскрибируемой части совпадает с последовательностью РНК, т. е. является незначащей). Каноническая последовательность промотора несимметрична, что отражает его функциональную несимметричность. Действительно, промотор определяет не только место начала транскрипции, но и ее направление. Среди природных промоторов пока не обнаружено ни одного с канонической последовательностью, но искусственно сконструированный промотор с канонической последовательностью отличается очень высокой эффективностью (этот результат не был заранее очевиден усредненная последовательность вполне могла бы обладать средними свойствами). О том, что каноническая последовательность является наиболее эффективной, свидетельствуют и результаты многочисленных данных по мутационным изменениям последовательности промоторов изменения, приближающие последовательность промотора к канонической, как правило, увеличивают его силу, тогда как изменения, уменьшающие его сходство с канонической,— уменьшают его силу. Изменения нуклеотидной последовательности вне участков —10 и —35 обычно слабо сказываются на силе промотора. Знание этих закономерностей, однако, еще не позволяет надежно предсказывать силу промоторов и находить промоторы, рассматривая последовательность ДНК, хотя РНК-полимераза делает это очень быстро. [c.141]


    Э нхансеры могут содержать разные нуклеотидные последовательности, составленные из нескольких нуклеотидных мотивов , каждый нз которых обладает указанными особыми свойствами. Такие мотивы (модули) могут быть повторены в одном сайте или чередоваться друг с другом. В составе определенного семейства энхаисе-ров (например, в наиболее изученных энхансерах геномов вирусов) можно выделить отдельные общие мотивы , нуклеотидные за.мены в которых приводят к резкому снижению их биологической активности. Например, резко падает активность энхансера с последовательностью ТОО АААС в результате замены гуанилового нуклеотида, отмеченного звездочкой. [c.204]

    Рестриктирующие эндонуклеазы, детерминируемые хромосомой Е. соИ, — это крупные белки с мол. весом порядка 300 000—400 000, состоящие из полипептидных цепей трех типов. Они явно связываются со специфическими участками и неспецифически разрушают прилегающие к ним участки. Для их действия необходимо наличие АТР, ионов Mg2+ и S-аденозилметионина. Уникальная особенность этих белков состоит в способности вызывать гидролиз необычно больших количеств АТР [215]. Значение всех этих свойств рестриктирующих ферментов остается до сих пор неясным. Второй класс рестриктирующих ферментов состоит из относительно небольших мономерных или димерных белков с мол. весом 50 000—100 000. Местом атаки этих ферментов служат, как правило, нуклеотидные последовательности с локальной симметрией второго порядка [217]. Так, например, для двух рестриктирующих эндонуклеаз, детерминируемых ДНК плазмиды R-фактора Е. соН, и рестриктирующего фермента Hemophilus influenzae были идентифицированы следующие участки расщепления (в приведенной ниже схеме стрелками показаны места расщепления, звездочками — места метилирования, а точками — локальная ось симметрии второго порядка)  [c.279]

    Вырезание интрона происходит очень точно это обеспечивается наличием сложной вторичной и третичной структуры РНК. Нуклеотидная последовательность интрона с учетом комплементарных взаимодействий отдельных участков может быть представлена в виде достаточно сложной структуры (рис. 99). Сходную структуру имеет интрон предшественника рРНК митохондрии. Замены отдельных нуклеотидов в составе интрона обнаруживают необходимость отдельных элементов его структуры для самосплайсинга. Например, нарушение комплементарности в районе А препятствует сплайсингу. Оказывается, что для правильного сплайсинга необходимы также комплементарные взаимодействия нуклеотидов (вне плоскости рисунка ) в элементах Б и В. Замена нуклеотида в районе Б, нарушившая комплементарность и сплайсинг, может быть компенсирована другой нуклеотидной заменой в районе В, если она восстановит комплементарные взаимодействия. Каталитические свойства определяются особой структурой РНК, создаваемой в результате комплементарных взаимодействий. [c.167]

    Первым достижением при использовании более быстрого метода определения последовательности [70], чем метод Холли, было установление нуклеотидной последовательности 120 мономерных звеньев 5S РНК из Е. oli. Свойства ее растворов указывают на наличие структуры высшего порядка с некоторой жесткостью и с большим числом спаренных оснований. Однако ее нуклеотидная последовательность позволяет при свободном выборе построить слишком много вторичных структур, в этом случае для их выбора был применен анализ РНК методом температурно-варьируемой ЯМР-спектроскопии высокого разрешения. Данные, полученные Этим методом [71], отдают предпочтение структуре, содержащей [c.61]

    Итак, регуляция активных генов осуществляется с помощью различных регуляторных белков-репрессоров и активаторов транскрипции. С физической точки зрения наиболее интересным свойством этих белков является их способность у.чнавать специфические нуклеотидные последовательности ДНК. Установлено, что в комплексе с регуляторными белками сохраняется обычная -подобная конформация ДНК. Узнавание белками их специфических связывающих мест на ДНК основывается на прямом чтении белком последовательности оснований в узкой и/или широкой бороздках ДНК. Специфичность связывания обеспечивается образованием большого числа водородных связен и других слабых взаимодействий между функциональными группами белка и основаниями ДНК. Одна и та же последовательность оснований может быть прочитана как со стороны узкой, так и со стороны широкой бороздки ДНК. Однако характер и пространственное расположение функциональных групп оснований — потенциальных доноров и акцепторов водородных связей— в узкой и широкой бороздках ДНК значительно отличаются. Поэтому часто говорят о двух каналах передачи информации. В узкой бороздке ДНК атомы 02 пиримидинов и N3 пуринов могут служить в качестве акцепторов водородных связей, в то время как 2-аминогруипа гуанина часто является донором водородной связи. Важной особенностью структуры ДНК является пространственная эквивалентность положений всех этих акцепторных групп для пуриновых и пиримидиновых оснований, находящихся в одной и той же полинуклеотидной цепи. Кроме того, атомы N3 пурина и 02 пиримидина в каждой паре оснований связаны осью симметрии второго порядка. Поэтому при чтении текста со стороны узкой бороздки ДНК АТ- и ГЦ-пары легко узнать, в то время как АТ- и ТА-пары различить трудно, так как оии несут геометрически эквивалентные группы сходной химической природы. [c.290]

    Приступая к конструированию ifl -промотора, Де Боер и его коллеги ставили своей целью создание на основе двух разных сильных регулируемых промоторов еще более сильного промотора, способного обеспечивать высокий уровень экспрессии чужеродных белков. Когда они начинали свои исследования, нуклеотидные последовательности большинства прокариотических промоторов, в первую очередь Е. соИ, были >0Ke установлены, однако конкретные свойства, обусловливающие их эффективность, оставались неизвестными. Было показано, что почти все мутации, влияющие на силу промотора, локализуются в -10- или в -35-областях (находящихся на расстоянии 10 или соответственно 35 п. и. до точки инициации транскрипции). Бо- [c.120]

    ВКО имеет широкий спектр хозяев (позвоночных и беспозвоночных), остается жизнеспособным в течение многих лет после лиофи-лизации (испарения воды с помощью замораживания) и не обладает онкогенными свойствами, а потому может использоваться для создания так называемых векторных вакцин. С их помощью осуществляется доставка и экспрессия в организме-хозяине клонированных генов, кодирующих антигенные белки, которые индуцируют выработку протективных антител. Геном ВКО имеет большие размеры и не содержит уникальных сайтов рестрикции, что не позволяет встраивать в него дополнительные нуклеотидные последовательности. Однако нужные гены можно вводить в геном ВКО с помощью гомологичной рекомбинации in vivo следующим образом. [c.239]

    Скрининг (S reening) Метод (или комплекс методов) идентификации единичного объекта (особи в популяции, клетки с искомыми свойствами, участка нуклеотидной последовательности и т.д.) путем перебора большого числа объектов. [c.560]

    Химическая структура нуклеиновых кислот будет описана в 2.3. Здесь же уместно кратко описать основные принципы, заложенные в структуре молекулы ДНК, которые обеспечивают возможность самокопирования ДНК независимо от нуклеотидной последовательности. При делении клетки информацию, заложенную в молекулах ДНК этой клетки в виде определенной последовательности нуклеотидов, необходимо передать двум вновь образованным дочерним клеткам. Поэтому из одной молекулы ДНК перед клеточным делением должно образоваться две с той же нуклеотидной последовательностью. В живых организмах ДНК в период между ее удвоением всегда существует в виде двух связанных друг с другом полинуклеотидных цепей (нитей). Связь эта осуществляется в результате того, что каждый из четырех составляющи. ДНК типов нуклеотидов резко предпочтительно взаимодействует с одним из тре.ч остальных. Поэтому нуклеотидные последовательности этих нитей взаимно однозначно соответствуют друг другу, или, как принято говорить, комплементарны друг другу. Следовательно, каждая цепь содержит информацию о комплементарной нуклеотидной последовательности другой цепи. Будучи разделенными, цепи со.чраняют необходимую информацию для построения из нуклеотидов новы.к комплементарны. цепей и, таким образом, осуществляют воспроизведение информации, заложенной в двуспиральной структуре. Процесс самоудвоения ДНК, т.е. образования двух новых двуни-тиевых молекул ДНК, идентичных первоначальной молекуле, называют репликацией ДНК. Химические события, лежащие в процессе репликации, состоят в последовательном присоединении нуклеотидов друг к другу. Этот процесс в живых организмах осуществляет специальный фермент — ДНК-полимераза. Изучение свойств и механизмов функционирования этого фермента в клетке показало, что он работает только в присутствии материнской двуспиральной ДНК. Цепи материнской ДНК направляют образование новых комплементарных цепей, т.е. на каждой стадии роста новой цепи осуществляют отбор одного из четырех мономеров и присоединения его к растущей цепи. [c.18]

    Сегодня известны первичные структуры более 2000 белков, причем все возрастающая информация поступает из анализа нуклеотидной последовательности генов. Для тех, кто старается более глубоко понять язык аминокисютных последовательностей, доступен уже огромный материал — обширный текст, который в целом представляет собой существенные фрагменты книги жизни . Что может дать более глубокий его анализ Бесспорно, он совершенно необходим в изучении связи между строением и функцией отдельных представителей пептидно-белковой природы. Но, может быть, он приведет нас к открытию более общего белкового кода , позволит нам в будущем в той нли иной мере пр сказывать свойства белков по их первичной структуре. Это уже можно делать достаточно успешно в отношении пространственной структуры. А биологическая роль Вряд ли природа придумала аминокислотный алфавит из 20 букв случайно. Есть над чем подумать, и все возрастающий поток новых данных по аминокислотным последовательностям отнюдь не делает каждый новый шаг в этом направлении более скучным,— напротив, он воодушевляет нас, рождает новые пути и концепции и вновь и вновь обращает нас к вопросу о тайне химической азбуки живого. [c.81]

    Участки ДНК, к которым присоединяются регуляторные белки,-это не сами структурные гены, а непосредственно прилегающие к ним области, называемые промоторами и операторами. Промотор представляет собой последовательность оснований, распознаваемую ДНК-зависимой РНК-полимеразой он служит местом связывания РНК-полимеразы, и от него начинается транскрипция. С промотором связаны и гены, экспрессия которых не подвержена регуляции. Промоторы регулируемых генов могут изменять свои свойства в результате связывания регуляторных белков. Оператор представляет собой нуклеотидную последовательность, расположенную между промотором и структурными генами. Он тоже взаимодействует с регуляторным белком-репрессором, от которого зависит, будет ли подавлена транскрипция или она произойдет. Промотор, оператор и структурные гены образуют оперон. Опероном называют группу функционально связанных между собой генов. Белки, кодируемые генами одного оперона,-это, как правило, ферменты, катализирующие разные этапы одного метаболического пути. Транскрипция генов оперона ведет к синтезу одной общей (полицистронной) молекулы мРНК. [c.481]

    Как уже упоминалось выше, в аминоацил-тРНК остаток аминокислоты связан сложноэфирной связью с одним из гидроксилов 1 ис-гликольной группировки З -концевого остатка аденозина в нуклеотидной последовательности. В связи с изучением строения и свойств аминоацил-тРНК большое внимание исследователей привлекает получение соответствующих модельных соединений. [c.518]

    Улучшение аминокислотного состава неполноценных белков или путем изменения нуклеотидной последовательности генов или путем синтеза искусственных генов с заданными свойствами и перенесение их в клетки растений. Например, американский исследователь Джейнс синтезировал ген, кодирующий белок, содержащий в своем составе 80 % незаменимых аминокислот. Разработаны пути переноса этого гена в клетки злаковых растений. [c.399]

    При сравнении нуклеотидных последовательностей мРНК и структурного гена можно выделить области границ между экзонами и интронами. Для них характерно наличие двух важных свойств (или их отсутствие). Во-первых, отсутствие сколько-нибудь значительной гомологии между двумя концами интрона. Это исключает возможность образования значительного по размеру участка со вторичной структурой, связывающего концы интрона вместе, что послужило бы предварительным этапом для сплайсинга. Во-вторых, оказалось, что на границе экзон—интрон имеется каноническая, присутствующая в разных генах, хотя и довольно короткая, последовательность повсеместное присутствие этой последовательности вызывает предположение о ее участии в сплайсинге в ядре (гл. 26). [c.255]

    Мутации в кластерах box 9 и box 2 также не комплементируют мутации в других кластерах. Следовательно, по такому генетическому критерию они неотличимы от мутаций, затрагивающих экзоны. Однако их биохимические свойства различны, на что указывает нарущение синтеза соответствующей нормальной мРНК. При анализе нуклеотидной последовательности ДНК обнаруживается, что оба этих кластера находятся в области 14. Мутации кластера box 9 затрагивают последовательность ДНК длиной 8 п.п., находящуюся на 350 п.н. правее границы с В4. Мутации кластера box 2 смещены к другому концу интрона и находятся на расстоянии 25 п. н. левее границы с В5. Обе группы мутаций препятствуют объединению участков В4 и В5 в результате удаления области 14 при сплайсинге. Существование этих мутаций указывает на два важных обстоятельства общего характера. Во-первых, мутации, затрагивающие специфические сайты, могут препятствовать узнаванию определенньрс границ сплайсинга, причем такие сайты могут быть достаточно удалены от самих границ. Во-вторых, с помощью генетических методов анализа эти мутации нельзя отличить от мутаций, затрагивающих кодирующие белок участки. (Точно так же неразличимы классические i u -мутации, затрагивающие промоторы или операторы и их структурные гены см. гл. 14.) [c.259]

    Одно из свойств многих сателлитных ДНК-выраженная асимметрия в ориентации нуклеотидных пар двух цепей ДНК. В случае D. virilis (см. табл. 24.1) в каждой из основных фракций сателлитной ДНК одна цепь существенно богаче основаниями Т и О. Это увеличивает ее плавучую плотность, поэтому после денатурации тяжелая цепь (Н) может быть отделена от легкой цепи (Ь). Это может оказаться полезным при определении нуклеотидной последовательности сателлитной ДНК. [c.302]


Смотреть страницы где упоминается термин Нуклеотидная последовательность свойства ДНК: [c.170]    [c.170]    [c.218]    [c.256]    [c.15]    [c.170]    [c.170]    [c.296]    [c.577]    [c.168]    [c.268]    [c.718]    [c.882]    [c.435]    [c.501]    [c.291]    [c.297]    [c.87]    [c.84]    [c.12]    [c.433]    [c.123]   
Биофизическая химия Т.3 (1985) -- [ c.324 ]




ПОИСК







© 2025 chem21.info Реклама на сайте