Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Слияние клеток, последовательность

    У человека и высших животных в результате мейоза образуются гаметы— яйцеклетка и сперматозоиды. При их слиянии возникает снова диплоидное ядро, из которого путем последовательных митозов развивается взрослый организм. Стадия мейоза характерна для жизненного цикла всех эукариот, однако отнюдь не всегда этот процесс протекает в период, аналогичный соответствующему моменту жизненного цикла человека. Так, клетки многих простейших и грибов обычно гаплоидны. После слияния двух гаплоидных ядер с образованием диплоидной клетки быстро наступает мейотическое деление, в результате которого вновь возникают гаплоидные особи. Чередование гаплоидных и диплоидных фаз жизненного цикла часто встречается у низших растений и примитивных животных. Например, гаметы папоротника падают на почву и [c.42]


    При половом размножении слиянию половых клеток предшествует два последовательно протекающих деления, на которые приходится лишь одно воспроизводство хромосом. Поэтому ядра половых клеток содержат вдвое уменьшенное против исходного число хромосом и называются гаплоидными. При слиянии гаплоидных ядер возникает клетка с двойным, диплоидным числом хромосом, одна половина которых происходит от одной родительской клетки, другая — от другой. [c.116]

    Клеточный материал может быть отделен от клетки внутрь ограниченных мембраной везикул экзоцитоз). Жидкий характер клеточной мембраны проявляется и при слиянии везикул с плазматической мембраной, что происходит в многочисленных секреторных процессах. К сожалению, невозможно наблюдать последовательные стадии процесса отделения везикул и их слияния с клетками, требующие быстрой перестройки фосфолипидных бислоев. [c.282]

    Многие природные онкогенные ретровирусы экспрессируют гибридные белки. Происходит это в результате слияния N-концевой части вирусного гена gag или env с онкогенными последовательностями, захваченными вирусом из ДНК клетки-хозяина. Такая структура способна обеспечить очень эффективную экспрессию гибридных белков, поскольку сигналы, влияющие на их трансляцию, относятся к категории весьма активных генетических элементов, которые в норме обеспечивают масштабное производство продуктов вирусных генов в инфицированной клетке. Кроме того, на эффективность синтеза таких белков может [c.283]

    Клеточное деление необходимо для роста и поддержания жизнедеятельности организма. У одноклеточных организмов оно также служит механизмом увеличения числа особей. У многоклеточных организмов имеются специальные клетки — гаметы, которые при оплодотворении сливаются, образуя зиготу. В процессе последовательных делений зигота дает начало новой особи того же вида. Поскольку при слиянии двух гамет их хромосомы объединяются. [c.98]

    Мембраны состоят из динамических структур двух типов относительно быстро изменяющиеся мембраны и мембраны, циркулирующие между определенными клеточными компонентами и образующие позже поверхности цитоплазмы. Мембраны формируются из закрытых пузырьков, которые циркулируют в клетке. Вновь появившаяся мембрана — результат последовательного слияния нескольких слоев пузырьков и освобождения внутреннего содержимого пузырька. [c.66]

    Следует учитывать две основные особенности маркерных генов. Во-первых, их структуру (нуклеотидную последовательность), которая определяет такие факторы, как регуляция транскрипции (конститутивная экспрессия или включение под действием определенных внешних условий или стадии развития), скорость транскрипции, стабильность транскрипта и эффективность трансляции. Во-вторых, активность продукта данного гена, который, очевидно, отвечает за доминантную экспрессию подходящего селективного фенотипа. В большинстве обычных векторов трансформации в качестве селективных маркеров используют прокариотические ферменты устойчивости к антибиотикам, которые были адаптированы с помощью генно-инженерных методов для конститутивного синтеза в растительных клетках (табл. 2.1). В некоторых экспериментах в качестве доминантных маркеров успешно использовались ферменты, обеспечивающие защиту от гербицидов. Обычно добиваются слияния кодирующей последовательности фермента с промоторами, выделенными из Т-ДНК или генома вируса мозаики цветной капусты (ВМЦК), на 5 -конце, а на З -конце —с сигналом полиаденилирования (тоже полученным, как правило, из какого-либо гена Т-ДНК). В качестве маркерных генов наиболее широко используют гены устойчивости к таким антибиотикам, как канамицин, G418 [8, 27], гигромицин [54] и блеомицин [28] Недавно для трансформации растительных клеток в качестве доминантных маркеров были попользованы гены, обеспечивающие устойчивость к гербицидам, таким, как глифосат [45]. Поскольку селективные маркерные гены нормально функционируют в трансформированных [c.33]


    Расщепление химерных белков В зависимости от предназначения белкового продукта клонированного гена он может использоваться как таковой или в составе химерного белка, причем последний вариант встречается нечасто. Например, из-за присутствия фрагмента хозяйского белка большинство химерных белков оказываются непригодными для применения в клинике, а сам продукт клонированного гена-мишени может оказаться неактивным. Кроме того, для химерных белков предусмотрена более сложная процедура тестирования, которую они должны пройти, чтобы получить разрешение к применению у соответствующих организаций. Все это заставляет искать способы удаления лишних аминокислотных последовательностей из молекулы получаемого продукта. Один из таких способов основан на присоединении белка, кодируемого геном-мишенью, к белку клетки-хозяина, содержащему короткий пептид, распознаваемый специфической протеазой небактериального происхождения. Такое присоединение тоже программируется на уровне ДНК. Олигонуклеотидные линкеры, несущие сайты для протеаз, можно пришить к клонированному гену до того, как такая конструкция будет введена в экспрессирующую векторную систему слияния. Линкером может служить, например, олигонуктеотид, кодирующий пептид Пе-01и-01у-Аг . После синтеза и очистки химерного белка для отделения белкового продукта, кодируемого клонированным геном, можно использовать фактор свертывания крови Х , который является специфической протеиназой, разрывающей пептидные связи исключительно на С-конце последовательности Ile-Glu-Gly-Arg (рис. 6.6). Более того, поскольку такой пептид [c.112]

    Если слияние гена-мишени с фрагментом ДНК, кодирующим сигнальный пептид, не приводит к эффективной секреции белкового продукта, приходится использовать другие стратегические приемы. Один из таких приемов, с успехом примененных в отнощении интерлейкина-2, основывался на слиянии гена, кодирующего интерлейкин-2, с геном, кодирующим полноразмерный предшественник мальтозосвязывающего белка, а не только его сигнальную последовательность, и разделении этих генов сегментом ДНК, кодирующим сайт узнавания для фактора Х . Когда такой химерный ген включили в плазмидный вектор и использовали его для трансформации Е. соИ, в периплазме хозяйской клетки обнаружили в большом количестве химерный белок. Обработав его фактором Х , получили функциональный интерлейкин-2. [c.126]

    Крупные макромолекулы (белки, полинуклеотиды или полисахариды), даже крупные частицы могут как поглощаться, так и секретироваться клетками. При их переносе происходит последовательное образование и слияние окруженных мембраной пузырьков (везикул), т. е. перенос веществ вместе с частью плазматической мембраны. Если таким путем осуществляется транспорт растворенных веществ — это пиноцитоз (от греч. пинос— пить), если твердых — фагоцитоз (от греч. фагос— есть, цитос— клетка).-При процессе эндоцитоза поглощенное вещество окружается небольшим участком мембраны, который вначале впячивается, а затем отщепляется, образуя внутриклеточный пузырек, содержащий захваченный клеткой материал. Большинство частиц, поглощенных при эндоцитозе, попадает затем в лизосомы, где они подвергаются деградации. [c.314]

    Ряс. 19-33. Серия последовательных световых микрофотографий делящейся клетки тычиночного волоска. Цифрами указано время в минутах, прошедшее с момента начала съемки. Пузырьки, слияние которых приводит к образованию клеточной пластинки, становятся различимыми к 42-й минуте. Пластинка постепенно расширяется и в конце концов сливается со стенкой материнской клетки. (С любезного разрешения Р. К. Нер1ег.) [c.189]

    Инсулин. На рибосомах шероховатого ретикулума р-клеток синтезируется препроинсулин, имеющий на TV-конце молекулы гидрофобную последовательность из 16 аминокислот, с помощью которой белок проникает в эндоплазматический ретикулум. В просвете трубочек теряется сигнальная последовательность и образованный проинсулин транспортируется в аппарат Гольджи. Там и в секреторных гранулах с помощью протеиназ отщепляется С-пептид ( onne ting — связующий). Образуется инсулин, который накапливается в секреторных гранулах и секретируется при слиянии мембран гранул с плазматической мембраной клетки. [c.388]

    Под действием электрического импульса происходит активация ооцита и слияние мембран между ядром клетки донора и энуклеированным ооци-том-реципиентом. Технология пересадки ядер клетки способствовала успешному получению клонированных живых кроликов, мышей, овец, коз, крупного рогатого скота и свиней. Было показано, что только эмбрионы на предимплантационной стадии являются тотипотентными, но эффективность этой технологии пока низка. У крупного рогатого скота была продемонстрирована следующая эффективность этой технологии на каждом этапе (%) энуклеация — 70—80, развитие морулы-бластоцисты клонированных эмбрионов — 20—30. В исследованиях K.P. Вондиоли (1991) 190 эмбрионов с пересаженными ядрами были получены из одного эмбриона путем многократной пересадки ядер из последовательно клонированных эмбрионов. Однако последовательные пересадки ядер после четвертого цикла сопровождались высокими эмбриональными потерями в матке. В итоге не удалось получить телят от пересадки эмбрионов, полученных после третьего цикла клонирования. [c.219]


    Существующая в настоящее время модель образования трансформирующих вирусов представлена на рис. 38.5. Предполагается, что ретровирус встроился вблизи с-опс-гена. В результате делеции происходит слияние генома провируса с геном с-опс, затем транскрипция ведет к образованию объединенной РНК, содержащей вирусные последовательности в одном конце и клеточные последовательности one в другом. В результате сплайсинга удаляются интроны как в вирусной, так и в клеточной частях молекулы. РНК имеет соответствующие сигналы для упаковки в вирионы. Вирионы могут образовываться, если в клетке содержится другая, интактная, копия провируса. В этих случаях некоторые диплоидные частицы вирусов содержат одну слившуюся и одну вирусную РНК. [c.493]

    Слипание бислоее и объединение бислоее представляют собой последовательные этапы слияния мембран. Это фундаментальные клеточно-мембранные процессы, происходящие не только при экзоцитозе и эндоцитозе, но также и при делении или слиянии клеток (рис. 6-86). Ни в одном из этих случаев механизм слияния мембран пока не понят, однако несколько интересных выводов можно сделать из анализа слияния некоторых вирусов, обладающих мембранной оболочкой, с клетками при инфекции. Клеточные мембраны никогда не сливаются самопроизвольно. Для гого чтобы мембраны слились, необходимо, чтобы молекулы воды были вытеснены взаимодействующими липидными бислоями, которые бы сблизились до расстояния 1,5 нм между собой. Процесс этот энергети- [c.423]

    Клетки размножаются путем удвоения своего содержимого с последующим делением надвое. Сложные последовательности клеточных делений, периодически прерываемые слиянием гамет, приводят к образованию многоклеточных организмов. У высших животных и растений даже после достижения ими фслости клеточное деление обычно необходимо, чтобы восполнять потери в результате износа клеток. Во взрослом человеческом организме просто для поддержания нормального состояния каждую секунду должно образовываться несколько миллионов клеток, и если все клеточные деления прекратятся (как, например, при массивном облучении), то человек погибнет через несколько дней. [c.394]

    Наиболее высококонсервативная последовательность в НА разных штаммов расположена на неполярном N-конце НА2, ассоциированном с активностью, благодаря которой вирус проникает в мембрану хозяйской клетки, инициируя инфекцию. Расщепление НА на НА1 и НА2 необходимо для инфекционного проникновения и слияния in vitro i[106, 124, 149] оно происходит в результате значительного изменения конформации НА [261]. Гомологичная расположенной на N-конце НА2 последовательность присутствует в. сайте активации кливеджа — сайте белка слияния (F-fusion) вируса Сендай [82, 213, 234, 235, 236]. На важность этой аминокислотной последовательности для процесса слияния указывают данные, что синтетические пептиды, имитирующие соответствующую последовательность либо N-конца НА2, либо N-конца белка F вируса Сендай, ингибируют процесс проникновения вируса [213]. Однако трудно объяснить, каким образом N-конец НА2 непосредственно вовлечен в процесс проникновения в клетку, поскольку он локализован в 10 нм от отдаленной верхушки молекулы НА и в. [c.48]

    На основе изучения влияния активации расщепления на инфекционную активность вирусов гриппа и парамиксовирусов высказано предположение о функциональном сходстве N-концов белка F1 парамиксовирусов и N-концов НА2 вирусов гриппа наличие этих окончаний необходимо, для проникновения вируса в клетку [44]. Полученные недавно данные о слиянии вируса гриппа и клеточных мембран при низких значениях pH [21, 29, 62], а также о последовательности аминокислот в N-концах этих полипептидов [14, 55] хорошо согласуются с такой гипотезой. Затем было показано, что липосомы, содержащие нерасщепленный НА, неспособны к слиянию с клетками, однако такое слияние отмечали после расщепления молекул НА in vitro при обработке трипсином [20]. Таким образом, очень вероятно, что потребность в протеолитическом расщеплении НА для проявления инфекционной активности связана с ролью НА2 в процессе слияния мембраны вируса и клетки-хозяина, который осуществляется, по-видимому, в эндосомах [62]. [c.300]

    В обоих случаях для улучшения штаммов классическая селекция применяла мутагенез с последующим отбором. В тех случаях, когда это было возможно, применялись методы скрещивания или другие способы передачи генетической информации. В последние годы эффективным методом передачи генетической информации признано слияние протопластов. Тем не менее применение этих методов ограничено, так как мутации способны лишь изменить (скорее нарушить) систему регуляции микроорганизма. Генетический обмен помогает собрать в одной клетке полезные мутации и избавиться от вредных. Все до сих пор суп1,ест-вовавшие методы генетического обмена ограничены пределами одного вида (или близкородственными видами), так как основаны на классической рекомбинации. На молекулярном уровне это означает высокую гомологию в последовательностях ДНК- С помощью методов генной инженерии создалась возможность для введения новой генетической информации в клетку или увеличения копийности уже существующих генов. [c.106]

    Универсальность, относительная простота и доступность метода слияния протопластов делают особенно полезным его применение в селекции промышленных микроорганизмов. Как уже отмечалось, генетическая рекомбинация в сочетании с мутагенезом создает огромное многообразие форм и резко увеличивает материал для отбора. Тем самым значительно повышается производительность работы по получению новых штаммов с улучшенными свойствами. Метод слияния протопластов позволяет объединять в одном геноме мутации, положительно влияющие на продуктивность и полученные в разных селекционных линиях, в том числе такие, которые трудно или даже невозможно последовательно индуцировать в одной и той же клетке, а также избавляться от вредных мутаций, снижающих жизнеспособность штаммов-про-дуцентов. Во многих отношениях этот метод является более эф- [c.131]

    В настоящее время разработано большое количество методов для введения клонированных последовательностей ДНК в клетки млекопитающих. Среди них преципитация фосфатом кальция или DEAE-декстраном, электропробой, использование инактивированных вирусов и слияние прокариотических и дрожжевых протопластов с клетками млекопитающих. Наиболее широкое распространение получила преципитация фосфатом кальция. Точный механизм захвата ДНК, ее включения в реципиентную клетку непонятен, однако известно, что лишь небольшое количество клеток в культуре реципиентов включают ДНК. По аналогии с бактериальной генетикой эти клетки получили название компетентных . Количество включаемой ДНК — важнейшая характеристика используемой клеточной линии. Мышиные L-клетки включают несколько миллионов пар оснований экзогенной ДНК, человеческие фибробласты —только часть этого количества [44]. Было проведено несколько экспериментов по выявлению максимальных размеров ДНК, передаваемой неповрежденной. Обычно не удается перенести интактную ДНК, размеры которой превышают 100 т. п. н. Неизвестно, зависит ли это от свойств клеток-реципиентов или определяется трудностями в получении таких больших фраг- [c.26]

    Но ДЛЯ ЖИВЫХ организмов характерцы не только временные и обратимые изменения, но и более устойчивые. Рассмотрим, папример, жизненный цикл какого-либо животного. Единственная клетка — онлодотворенное яйцо — многократно делится, претерпевает ряд последовательных перестроек и становится многоклеточным зародышем. Зародыш превраш,ается в молодой организм, который достигает дефинитивного состояния. Половозрелые животные спариваются в результате слияния сперматозоида с яйцеклеткой начинается новый циКл роста и развития. Взрослые животные претерпевают дегенеративные изменения, приводяп ие в конце концов к смерти. [c.10]

    Гемагглютинин вируса гриппа обеспечивает связывание вирионов клеточными рецепторами и слияние вирусной и клеточной мембран. Последняя активность гемагглютинина проявляется только в кислой среде. Связанный вирус проникает внутрь клетки (интернализуется) в составе мембранных пузырьков затем вирус обнаруживается в более крупных эндосомах и, наконец, в лизосомах, внутренняя среда которых является кислой, что необходимо для инициации процесса слияния [25]. Точный механизм слияния вирусных и клеточных мембран остается неясным, однако показано, что для этого необходимо расщепле- ние молекулы гемагглютинина на ГА1 и ГА2, N-концевая аминокислотная последовательность ГА2 чрезвычайно консервативна у разных вирусов и очень гидрофобна. Предполагается, что при pH, близких к нейтральному, этот участок молекулы направлен внутрь глобулы. В кислой среде ГА2 претерпевает резкие конформационные изменения предполагается, что при этом N-концевой участок ГА2 оказывается экспонированным на поверхности глобулы, и инициирует слияние мембран [26]. Эту активность вируса можно исследовать in vitro в реакции рН-за-висимого гемолиза [27, 28]. [c.192]

    К наиболее полезным для анализа модификациям в структуре гена относятся замена одного нуклеотида или группы нуклеотидов, делеции или вставки нескольких нуклеотидов или протяженных участков ДНК и перестройки внутри гена. Ниже мы обсудим, каким образом эти модификации используются для идентификации регуляторных последовательностей, которые обеспечивают правильную экспрессию гена и отвечают за его тканеспецифичную и зависящую от времени регуляцию. Кроме того, изучение новых генов, образующихся при слиянии частей различных генов, очень облегчает идентификацию последовательностей, ответственных за правильную экспрессию. Например, слияние промотора SV40 и различных его производных с последовательностями, кодирующими легко идентифицируемые бактериальные или эукариотические клеточные белки, позволяет выяснить, какие последовательности промотора обеспечивают правильную инициацию, эффективность и регуляцию транскрипции гена SV40. Аналогичные химерные гены, содержащие, например, промоторы генов инсулина или эластазы, слитые с областью, кодирующей Т-антиген SV40, позволяют идентифицировать элементы, ограничивающие экспрессию генов инсулина или эластазы исключительно Р-клетками островков Лангерганса или ацинарными клетками соответственно. Для применения методов обратной генетики необходимо, чтобы существовал один или лучше несколько способов определения фенотипического проявления измененного гена. Соответствующие бесклеточные системы, с помощью которых можно определять эффективность транскрипции нормальных и модифицированных генов, а также изучать процессинг или трансляцию РНК, дают прекрасную возможность для анализа функции генов и последствий отдельных изменений в них. Трансфицируя нормальные и модифицированные гены с помощью [c.20]


Смотреть страницы где упоминается термин Слияние клеток, последовательность: [c.66]    [c.167]    [c.364]    [c.142]    [c.697]    [c.737]    [c.408]    [c.124]    [c.161]    [c.131]    [c.165]    [c.13]    [c.124]    [c.161]    [c.88]    [c.9]    [c.9]    [c.131]    [c.165]    [c.110]    [c.137]    [c.132]   
Антитела Методы Т.1 (1991) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте