Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулы, входящие в состав живых организмов

    Все клетки, даже самые простые, имеют мембраны. Мембраны отделяют внутреннее содержимое клетки от окружающей среды, поэтому нарушение целостности мембраны приводит к гибели клетки. Мембраны не только сохраняют молекулы веществ, входящих в ее состав, но и реализуют специфику химического состава клеточной цитоплазмы. С помощью специальных устройств мембрана избирательно выбрасывает из клетки ненужные вещества и поглощает из окружающей среды необходимые. Главные компоненты биологических мембран живых организмов — это сложные липиды. Следует обратить внимание на то, что все сложные липиды, описанные в разд. 9, имеют характерное строение для поверхностно-активных веществ, т. е. две большие неполярные углеводородные группы и полярную часть, способную к образованию водородных связей. Таким образом, эти молекулы способны самопроизвольно агрегировать, образуя в воде бислойные структуры, составляющие основу мембраны. В состав мембранного бислоя входят и молекулы белков, и свободные жирные кислоты. Последние встраиваются в бислой так, что их жирные хвосты погружены внутрь, а полярные группы во внешнюю среду и контактируют с ионами натрия с внешней, а с ионами калия с внутренней стороны бислоя (см. рис. 73). Биологические мембраны не только регулируют обмен веществ в клетке, но и воспринимают химическую информацию из внешней среды с помощью специальных рецепторов. Биологические мембраны обеспечивают иммунитет клетки, нейтрализуя чужие и свои вредные вещества. Они также способны передавать информацию соседним клеткам о своем состоянии. Наконец, совсем недавно было обнаружено, что многие белки-ферменты могут работать только внутри мембраны, запрещая, разрешая или сопрягая ферментативные процессы. [c.407]


    До сих пор речь шла о органических соединениях, молекулы которых состоят из атомов углерода, водорода, галогенов и кислорода. Мы выяснили, что такие соединения весьма многообразны - от природного газа и бензина до каучуков И пластмасс. Однако органические соединения могут быть еще более разнообразными, экзотическими и не менее важными веществами такими, как витамины, лекарственные препараты, моющие и взрывчатые вещества, соединения, придающие окраску, наконец, соединения, входящие в состав живых тканей, которые управляют химией живых организмов, передают детям свойства родителей, благодаря которьш живая ткань отличается от неживой материи. Все это - производные углеводородов, но в них огромную роль играют атомы азота (прежде всего), серы и фосфора. Перейдем к рассмотрению таких соединений. [c.125]

    МОЛЕКУЛЫ, ВХОДЯЩИЕ В СОСТАВ ЖИВЫХ ОРГАНИЗМОВ [c.625]

    Конденсация моносахаридов не ограничивается образованием дисахаридов. В живых организмах молекулы глюкозы могут конденсироваться тысячами, образуя гигантские молекулы. Входящие в их состав остатки глюкозы могут быть вытянуты в одну линию или же образовывать разветвленные цепи разной длины. Глюкоза входит в состав таких молекул, но только не в виде полных молекул, а в виде остатков, при соединении от каждых двух молекул глюкозы отщепляется по молекуле воды. Термин остаток применяют и к другим молекулам, соединяющимся путем конденсации в гигантские молекулы (их иногда называют макромолекулами). Такие гигантские молекулы имеет, например, крахмал. Он относится к полисахаридам ( много сахаров ). Конденсируясь с образованием крахмала, молекулы глюкозы теряют прежние свойства крахмал не растворяется в воде и несладок, он совершенно безвкусен. [c.145]

    Живой организм представляет собой совокупность живых клеток, объединенных в биологические системы, выполняющие определенные функции организма. Биологические системы состоят из полужидких агрегатов белковых молекул разных размеров и большой сложности, взаимодействующих с поразительной слаженностью с помощью малоизученных механизмов. Облучение живого организма или даже части живого организма любым видом ионизирующего излучения может привести к далеко идущим последствиям. В основе биологического действия излучения лежит воздействие радиации на отдельные химические вещества, входящие в состав живого организма и регулирующие все процессы, протекающие в нем, в том числе процессы деления, обмена, ферментации и т. д. Установлено, что очень малые дозы излучения оказываются стимулирующими, тогда как большие — губительными. [c.308]


    Таким образом, для понимания свойств тех или иных молекул, входящих в состав живых организмов, очень важно знать не только элементарный состав и строение этих молекул, но и взаимодействие между частями молекул, осуществляемое присущими этим молекулам зарядами. [c.47]

    Тем не менее почтенный Кольбе оказался неправ, и стереохимия стала важнейшим разделом науки о веществе. Особенно возросло ее значение после того, как выяснилось, что пространственное строение молекул играет решающую роль в работе всех механизмов живой клетки. Именно по этому признаку биокатализаторы — ферменты — сортируют молекулы, вовлекая в реакции только те из них, которые стыкуются с поверхностью фермента. Почти все аминокислоты, входящие в состав белков, могут существовать в виде пар оптических антиподов. Однако реальные белки состоят всегда из так называемых -изомеров. На 1)-изомеры организм реагирует, как на чужеродные молекулы, и не усваивает их. В обычных же химических реакциях оптические изомеры неотличимы, так же как не отличаются их температуры кипения или плавления, плотность и другие осязаемые свойства. Поэтому их разделение всегда было задачей выс- [c.79]

    По сравнению с другими природными веществами, такими, например, как целлюлоза и липиды, белки и нуклеиновые кислоты представляют собой самые сложные вещества, входящие в состав живых организмов. Эта сложность структуры и высокая молекулярная масса делают почти невозможным их постадийное воспроизведение в лаборатории. Их специфическое действие, присущее даже самым простейшим живым организмам, предполагает почти бесконечное многообразие подобных макромолекулярных соединений. Следовательно, исследования, направленные на реализацию перехода от простых молекул к сложным полимерам в отсутствие машины-клетки , безнадежны. Самые простые макромолекулярные структуры абиотического периода, которые можно себе представить, возникли, вероятно, иным путем, чем в современных клетках, а затем постепенно, через эволюцию на молекулярном уровне, получались образования со все более усложняющимися функциями. Поэтому попытки синтезировать некоторые биополимеры путем экспериментов, в которых имитируются условия первобытной Земли, можно сравнить с попытками воссоздания классического автомобиля из деталей космической ракеты. [c.15]

    Многие органические фосфаты участвуют в биохимических реакциях, протекающих в клетках живых организмов. В разд. 8.4 уже упоминались богатые энергией молекулы АТФ и АДФ, о них речь пойдет также в разд. 14.6. Фосфат глюкозы и многие другие фосфаты участвуют в процессах обмена веществ. Молекулы этих веществ, находясь в растворах жидкостей, входящих в состав организма, диссоциируют на ионы в соответствии с характерными для них константами диссоциации. [c.350]

    Стереоспецифические реакции, лежащие в основе синтеза биополимеров в живом организме, позволяют получить из сравнительно узкого ассортимента мономеров многочисленные, резко отличающиеся друг от друга вещества. Например, макромолекулы всех белков, входящих в состав растений и животных, построены главным образом из остатков одних и тех же двадцати аминокислот. Вместе с тем характер чередования конфигураций в молекулах биополимеров значительно сложнее, чем у синтетических сте- [c.198]

    Все большее внимание исследователей привлекают синтетические полипептиды, получаемые разложением карбангидридов а-аминокислот п из других соединений. Эти исследования все больше приближают нас к синтезу белков, являюш ихся носителями жизненных процессов. Однако получение белков, аналогичных тем, какие имеются в живых организмах, несомненно, представляет очень сложную задачу, так как 20 аминокислот, встречающихся в природных белках при мол. весе в 100 ООО (что соответствует приблизительно коэффициенту полимеризации 1 ООО), могут дать 101200 различно построенных молекул. Для того чтобы составить представление об этой цифре, укажем, что число всех атомов элементов, входящих в состав земной коры, составляет лишь 40 °. [c.249]

    Л. относятся к числу важных в биологич. отношении веществ, входящих в состав всех живых клеток. Нек-рые Л. в той или иной степени специфичны для определенных тканей или органов (напр., цереброзиды для мозговой ткани), другие (напр., нейтральные жиры) встречаются во всех тканях. Особенно богата Л. нервная ткань содержание фосфолипидов и гликолипидов в белом веществе мозга достигает 7,5—9,0% от веса ткани. Л. в живых организмах находятся в свободном или в связанном состоянии — в виде комплексов с белками липопротеидов и протеолипидов. Биохимич. и физиологич. функции отдельных групп Л. довольно разнообразны и далеко еще не изучены. Важнейшее физико-химич. свойство JI. — нерастворимость в воде — определяет их роль основного структурного элемента протоплазмы из Л. и липопротеиновых комплексов построены поверхностные мембраны клеток и клеточных органоидов — ядер, митохондрий, рибосом. Л., входящие в состав мембран, принимают непосредственное участие в процессах активного переноса через эти мембраны ионов и молекул различных веществ. Нейтральным жирам принадлежит важная роль источника энергии и экономичной формы, в к-рой организм запасает эту энергию. [c.487]


    Можно сказать, что белки являются обязательными участниками запасания, передачи, трансформации и рецепции химических сигналов — макромолекул, молекул и ионов — в живых системах. Во многих случаях сигналами, их рецепторами и преобразователями служат сами белки. Белки, входящие в состав, рецепторных систем организма, перекодируют внешние сигналы на химический и электрохимический язык. [c.88]

    Как построены макро.чолекулы, входящие в состав живых организмов Первые биохимики обнаружили в живых организмах вещества, которые были названы белками, нуклеиновыми кислотами, полисахаридами и сложными липидами. Развитие биохимии в немалой степени зависело от разработки методов выделения и очистки этих соединений. С помощью новых физико-химических методов удалось установить, что их молекулярные массы характеризуются величинами от 10 000 до 100 000 000 и более. В течение долгого времени кажущаяся поистине геркулесовой работа по установлению полной структуры таких молекул представлялась экспериментально вообще неосуществимой. Однако создание ряда новых физических приборов ультрацентрифуг, электрофоретических аппаратов, регистрирующих спектрофотометров, спектропо-ляриметров и аминокислотных анализаторов — позволило определить основные структурные характеристики этих молекул. Усовершенствованная техника анализа и, в частности, хроматографические методы сделали возможным разделение сложных смесей веществ и определение их микроколичеств, что является необходимой предпосылкой для установления ковалентных структур строительных блоков различных макромолекул. Благодаря развитию рентгеноструктурных методов оказалось возможным построить детальные трехмерные модели многих относительно небольших [c.13]

    Приведем несколько примеров. Доказано, что у всех населяющих Землю форм живых существ в создании белковой молекулы участвуют 20 аминокислот. Свойственная же отдельным органическим формам белковая специфичность определяется количественным отношением входящих в их состав аминокислот, а также порядком расположения последних в белковой молекуле. Те же закономерности установлены и в отношении нуклеиновых кислот, разнообразие и специфика которых также обусловлены в основном характером чередования нуклеотидов, причем число последних в 5 раз меньше, чем число протеиногенных аминокислот. Установлено, что организмы, принадлежащие к различным семействам, родам и видам животных, растений и микробов, используют в процессе жизнедеятельности один и тот же вид энергии — свободную, или химическую, энергию. Энергию эту они получают от общего для всех живых существ биологического горючего , роль которого выполняют особые соединения, содержащие богатые энергией фосфатные или тиоловые связи (подробнее этот вопрос освещен в главе Дыхание ). Лишь зеленые растения и небольшая группа бактерий способны наряду с этим использовать энергию кванта света, которую они запасают в форме тех же специфических макроэргических соединений. Выявлена близость, но не идентичность строения биологических мембран, ограничивающих поверхность протоплазмы и каждого из содержащихся в ней органоидов у всех представителей живого мира. Доказано, что многие органеллы протоплазмы имеют строго упорядоченную, ламеллярную (пластинчатую) структуру. [c.12]

    Позвоночные получают практически весь азот из содержащихся в их рационе белков и нуклеиновых кислот. В организме эти макромолекулы расщепляются до аминокислот или нуклеотидов, из которых потом образуются новые белки и нуклеиновые кислоты или другие молекулы. Около половины из 20 аминокислот, входящих в состав белков, представляют собой незаменимые аминокислоты (рис. 2-25) они не могут синтезироваться в организме и должны обязательно поступать с пищей. Остальные аминокислоты могут синтезироваться с использованием разнообразных исходных веществ, в число которых входят и промежуточные продукты цикла лимонной кислоты. Незаменимые аминокислоты образуются в организмах других живых существ - обычно в ходе длительных и энергоемких процессов метаболические пути этих процессов были утеряны позвоночными в ходе эволюции. [c.93]

    Белки являются наиболее важным комйонентом живой материи. В отличие от других высокомолекулярных соединений, входящих в состав живых организмов, белки широко различаются по размерам молекул, заряду, растворимости в воде и других полярных растворителях и даже по содержанию в тканях. Сочетание свойств, характеризующих отдельный белок, в конечном счете определяется специфической аминокислотной последовательностью полипептидной цепи (или нескольких цепей, если речь идет о многоцепочечном или субъединичном белке). Огромное разнообразие белков служит причиной образования сложных смесей, различных по составу, но близких по физико-химическим свойствам. Основными факторами позволяющими фракционировать белки на колонках с различными материалами, является их амфотерный характер и большие вариации в размерах молекул. На способности белков связывать специфические лиганды основан эффективный метод избирательного выделения — аффинная хроматография. С другой стороны, в исходном материале всегда присутствуют протеазы и пептидазы, что накладывает на условия выделения определенные ограничения, например в отношении температуры, диапазона pH и т. д. [c.421]

    Если бы биохимики поставили перед собой задачу выделить, охарактеризовать и синтезировать все органические молекулы, входящие в состав живых организмов, то это было бы совершенно безнадежным делом. Однако, как это ни парадоксально, все огромное разнообразие органических молекул в живых организмах сводится к довольно простой картине. Это связано с тем, что все макромолекулы в клетке состоят из простых и небольших молекул нескольких типов, используемых в качестве строительных блоков, которые связываются в длинные цепи, содержащие от 50 до многих тысяч звеньев. Длинные, похожие на цепи молекулы дезоксирибонуклеиновой кислоты (ДНК) построены всего из четырех типов строи-тельньгх блоков - дезоксирибонуклеоти-дов, расположенных в определенной последовательности. Белки представляют собой цепи, состоящие из 20 различных ковалейтно связанных друг с другом аминокислот - низкомолекулярных органических соединений с известной структурой, Эти аминокислоты могут быть расположены в самых разных последо- [c.15]

    Все живые организмы содержат большое число органических кислот. Некоторые из них являются участниками основного метаболизма. Это уксусная, пировинофадная, яблочная, фумаровая, лимонная, изолимонная, цис-аконитовая, длинноцепные алифатические кислоты с прямой цепью. Обычно они изучаются в курсе органической химии. Кроме того, живая природа производит множество специфических предельных и непредельных, часто полифункциональных кислот. Они существуют как в свободном виде, так и в форме ацильных групп, входящих в состав более сложных молекул. В таблице 1 приведены структурные формулы и названия некоторых часто встречающихся природных алифатических кислот небольшой молекулярной массы. [c.21]

    Единство живого и неживого с точки зрения химизма заключается прежде всего в общности их элементарного химического состава. Как вещества неживой, гак и живой природы состоят из одних и тех же элементов периодической системы. Однако, если многообразие первых обусловливается разнообразным сочетанием почти всех 104-х известных ныне элементов, то вторые образованы главным образом из углерода в результате его соединения с небольшим чнслОхМ таких элехментов, как Н, О, Н, 5, и некоторыми другими. Особое свойство углерода, его исключительная способность к реакциям обеспечивает образование неисчислимого количества соединений. В этом уже проявляется известное отличие, особенность биополимеров, Именно в силу общности элементарного химического состава частиц (.молекул), входящих как в состав веществ неживой природы, так и живых организмов, действуют одинаковые силы. Это известные химические связи ковалентные, ионные, водородные, межмолекуляр-ные силы Ван-дер-Ваальса и т. д. Других каких-либо особых сил между атомами в молекулах биологических структур не существует. [c.98]

    Молекулярный вес выделенных до настоящего времени нуклеиновых кислот (по данным Зигнера) не менее 1 млн. Согласно современным представлениям, каждая пара цепей нуклеиновых кислот соединена водородными связями между nypинoвы m заместителями г образованием палочкообразной двойной спирали (винтовая линия). Каждое основание в одной цепи соответствует определенному основанию в другой цепи. В живом организме водородные связи между обеими цепями при определенных условиях (например, при делении клетки) разрываются и каждая отдельная цепь вследствие необходимости специфической эквивалентности между входящими в ее состав основаниями становится матрицей для создания из элементарных звеньев цепи противоположного строения. Такой направленный синтез, по-види>юму, позволяет считать, что по крайней мере часть заключенных в хромосомах наследственных признаков связана с нуклеиновыми кислотами. Характерное для живого организма создание молекул различных белков также должно протекать по соответствующему матричному механизму. Значительный вклад в химию нуклеиновых кислот внес Тодд. Однако окончательное выяснение состава и строения нуклеиновых кислот — задача еще не разрешенная вследствие многообразия возможных структур, но очень важная как для понимания биологических процессов, так и для изучения структуры белков. [c.97]

    Алкилнрование — реакция введения алкила в молекулу органического соединения. Алкилы — это обобщенное название одновалентных насыщенных углеводородных радикалов. В живом организме могут легко алкнлироваться свободные сульф-гидрнльные группы и аминогруппы, входящие в состав различных органических со-едняевий клетки. Сульфгидрильные группы обладают способностью присоединяться к поляризованным или легко поляризующимся двойным связям в таких соединениях, как акрилонитрил, акриламид, метилакрилат, малеиновая кислота и др. Указанные реакции не обратимы и, как правило, быстрее протекают в щелочной среде, что свиде- [c.93]

    За исключением аминокислоты глицина, все остальные а-аминокис-лоты — оптически активные вещества, так как в их молекулах имеется асимметрический атом углерода. Аминокислоты, входящие в состав всех белков, а также встречающиеся в живых организмах в свободном виде (природные аминокислоты), относятся к -ряду. Одни из этих аминокислот являются правовращающими, другие — левовращающими. В оптические антиподы природных аминокислот -ряда входят аминокислоты D-ряда. Эти аминокислоты получаются путем синтеза, в природе же они встречаются редко. Они не входят в белки и очень редко встречаются в свободном состоянии в ортанизмах. Для правильной ориентировки в оптических свойствах естественных аминокислот обычно к букве L добавляют знак -Ь для обозначения правого вращения и знак — — для левого вращения. [c.18]

    Результаты изучения химической структуры ДНК, изолированных из различных живых организмов, показали, что ДНК обладают видовой специфичностью, которая зависит от количества различных мононуклеотидов, входящих в состав ДНК, и от последовательности размещения их в молекулах ДНК. Как известгю, видовой специфичностью обладают также и белки. Нуклеотидный состав РНК, о котором можно судить по содержанию в них аденина, гуанина, цитозина и урацила, варьирует в значительно меньших размерах, чем нуклеотидный состав ДНК. Только у далеко отстоящих друг от друга видов можно наблюдать различия в нуклеотидном составе РНК. [c.54]

    Вопросу состояния воды и ее роли в биологических системах посвящено большое количество работ [ 10,11,38-42]. Основываясь на литературных данных, H.A. Аскоченская [36] указывает, что полифункциональность воды в живом субстрате базируется на выявленной структурной ассоциативной множественности ее в биологических системах. Авторы [43] отмечают, что в биологических объектах вода находится в двух состояниях свободная, обладающая всеми параметрами чистой воды, и связанная - с измененными свойствами, обусловливающая устойчивость организма к неблагоприятным условиям. Но свойства и той, и другой воды постоянно меняются. Обобщая результаты работ ряда исследователей, Ю.В. Новиков и соавторы [4] отмечают, что вода, связанная с клеточной протоплазмой, и вода, входящая в состав межклеточной жидкости и других образований организма, принимает структуру, напоминающую структуру льда. При этом структурированная вода более важна для сохранения функций и жизнеспособности тканей. А.К. Гуман [10] заключает, что конфигурация пустот ледяной решетки такова, что биомолекулы включаются в пустоты без всякого повреждения, с сохранением способности к проявлению жизненных функций, тогда как в плотноупакованной структуре они не могут войти в оптимальный контакт с водой. Используя метод рентгено-структурного анализа, авторы [44] приходят к выводу, что внутриклеточная вода эритроцита образует сложную пространственную сеть, в петлях которой расположены молекулы гемоглобина. И.М. Медведев и Т.П. Фисанович [45] считают, что структурированная вода является защитным фактором клетки, в частности эритроцита. По данным ряда авторов, вода с квазикристаллической структурой является катализатором ряда биохимических реакций [46-49]. [c.208]


Смотреть страницы где упоминается термин Молекулы, входящие в состав живых организмов: [c.125]    [c.127]    [c.12]    [c.192]    [c.411]    [c.139]    [c.411]    [c.598]    [c.15]    [c.56]    [c.56]   
Смотреть главы в:

Химия Издание 2 -> Молекулы, входящие в состав живых организмов




ПОИСК





Смотрите так же термины и статьи:

Живые организмы



© 2024 chem21.info Реклама на сайте