Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные свойства ударных волн

    Основные СВОЙСТВА УДАРНЫХ ВОЛН 41 [c.41]

    Основные свойства ударных волн [c.41]

    Во второй главе рассматриваются основные параметры и свойства ударных волн при внешних взрывах, которые необходимо учитывать при оценке их воздействия на оборудование технологических установок. [c.7]

    К основным параметрам, характеризующим опасность взрыва, относят давление во фронте ударной волны, максимальное давление взрыва, среднюю и максимальную скорость нарастания давления при взрыве, дробящие или фугасные свойства взрывоопасной среды. [c.20]


    Здесь собраны фундаментальные свойства ударного перехода, т. е. изменения основных величин при переходе через ударную волну. Эти свойства являются общими и верны для любого нормального газа (определение 2.2). Ниже они фиксируются в виде ряда теорем и их следствий. [c.41]

    Металлические материалы широко применяют в аппарато- и машиностроении, катализе, электротехнике, радио- и электронной промышленности. Действительно, чтобы осуществить любой процесс, например химико-технологический, необходимо располагать соответствующей аппаратурой. Использование представлений макрокинетики, теории химических реакторов, а также методов математического и физического моделирования в принципе позволяет найти оптимальную для данного процесса конструкцию и размеры аппарата. Но тогда возникает вопрос, из каких материалов следует делать эту аппаратуру, чтобы она была способна противостоять разнообразным агрессивным воздействиям, в том числе химическим, механическим, термическим, электрическим, а в ряде случаев также радиационным и биологическим. Выбор конструкционных материалов осложняется, когда перечисленные воздействия сопутствуют друг другу. Кроме того, в последнее время требования к материалам, используемым только в химической технологии, повысились по двум причинам. Во-первых, значительно шире стали применять экстремальные воздействия, такие, как сверхвысокие и сверхнизкие температуры и давления, ударные и взрывные волны, ионизирующие излучения, биологические ферменты. Во-вторых, переход к аппаратам большой единичной мощности по производству основных химических продуктов создает исключительно сложные проблемы в изготовлении, транспортировке, монтаже и эксплуатации подобных установок. Например, на современном химическом предприятии можно видеть контактные печи для производства серной кислоты диаметром 5 м, содержащие до 5000 различных труб, реакторы синтеза аммиака и ректификационные колонны высотой более 60 м. Сочетание механических свойств, таких, как прочность, вязкость, пластичность, упругость и твердость, с технологическими свойствами (возможность использования приемов ковки, сварки, обработки режущими инструментами) делает металлические материалы незаменимыми для построения химических реакторов самой разнообразной формы и размеров. [c.135]

    Естественно предположить, что это же свойство имеет и взрывная волна в неоднородной атмосфере. Действительно, если давление внутри волны постоянно в пространстве (давление пропорционально плотности энергии), а плотность массы равна нулю, то уравнения гидродинамики в основной части объема выполняются тривиальным образом. Тогда, чтобы описать распространение волны, надо воспользоваться условиями на самом ударном фронте. [c.115]


    Полагают, что иребиотическая, или примитивная, атмосфера Земли в период происхождения жизни обладала сильно восстановительными свойствами кислород в атмосфере отсутствовал. Свободный кислород появился много позднее, в основном как продукт фотосинтеза, проводимого зелеными растениями [42], Эта восстанавливаюи1ая атмосфера содержала такие газы, как СН , МНз, N2, СО, СО2, Н2 и водяные пары. Сейчас существует много доказательств того, что реакции между этими молекулами и неорганическими компонентами протекали под воздействием энергии ультрафиолетовых лучей, электрических разрядов, тепловой, радиации, а также других форм энергии, таких, как ударные волны. [c.181]

    Один из основных параметров, характеризующий действие ударной волны и необходимый в анализе взрывов для более точной оценки последствий - избыточное давление, В зависимости от типа взрыва (наземный, когда источник взрыва расположен на поверхности земли или на незначк-гельной высоте, и надземный (воздушный), если источник инициирования взрыва расположен на высоте Ь = 8 - 10 м над уровнем земли) и свойств взрывающейся среды, расчетные зависимости для избыточного давления различны. [c.10]

    На основе существуюш,их представлений переход горения твердых ВВ в детонацию можно представить обш,ей упрош енной схемой (рис. 44), которая включает следующие стадии I — устойчивое послойное горение II — конвективное горение III — низкоскоростной (800—3500 м1сек) режим взрывчатого превращения IV стационарная, нормальная детонация. Каждая из стадий различается механизмом передачи тепла и возбуждения реакции. Основной формой передачи тепла при послойном горении является молекулярная теплопроводность, при конвективном горений — вынужденная конвекция. Низкоскоростной режим возбуждается волнами сжатия, детонация — ударной волной. В общем случае развитие процесса является ускоренным. Конечным результатом ускоренного развития является формирование ударной волны, которая инициирует детонацию ВВ, если ее амплитуда превышает критическое значение, и система является детонационноспособной (диаметр заряда превышает критический диаметр детонации). Существование и пространственная протяженность отдельных стадий зависят от структуры заряда, физико-химических (индивидуальных) свойств ВВ, условий проведения опыта. Так, например, конвективное горение может непосредственно переходить в детонацию, минуя стадию III. Развитие процесса может заканчиваться установлением низкоскоростного режима с постоянной скоростью, и возникновение детонации отсутствует. [c.110]

    Измерение критического давления инициирования детонации. Существует несколько методов определения Рк ,с содержанием которых можно ознакомиться в работе [148]. Если в ранних исследованиях передача детонации от активного заряда к пассивному осуществлялась в основном через воздушный промежуток, то в последние годы широкое распространение получил экспериментальный метод определения основанный на использовании инертной преграды (металл, плексиглас и т. п.). Схема опыта представлена на рис. 88, а 1 — ВВ, 2 — преграда, 3 — активный заряд, 4 — линза, 5 — детонатор), а его графическая интерпретация — на рис. 88, б (О/ — ударная адиабата материала преграды, О// — ударная адиабата исследуемого ВВ, 1 2— изэптропа расширения преграды). При детонации активного заряда в преграду входит ударная волна, давление в которой определяется, если известна ударная адиабата ВВ и зависимость массовой скорости материала преграды от свойств активного заряда. После подхода волны к границе преграда — исследуемое ВВ обратно по преграде распространяется волна разгрузки, а по ВВ — ударная волна. [c.185]

    Наиболее важной особенностью процесса сгорания в преддетонацион-ном периоде, приводящего к возникновению детонационной волны в трубах, является несомненно то, что пламя, по мере своего продвижения, непрерывно рождает волны сжатия конечной амплитуды — ударные волны с небольшим скачком давления, распространяющиеся в свежем газе со скоростью, несколько превышающей звуковую. Образование ударных волн в нламени непосредственно связано с основными свойствами интенсивно горящих газовых смесей. Действительно, нри воспламенении каждого элементарного слоя газа происходит резкое увеличение объема (в 8—10 раз), определяемое относительным повышением температуры и изменением числа молекул нри сгорании, так что [c.187]


Смотреть страницы где упоминается термин Основные свойства ударных волн: [c.302]   
Смотреть главы в:

Лекции по основам газовой динамики -> Основные свойства ударных волн




ПОИСК







© 2025 chem21.info Реклама на сайте