Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Возникновение детонации

    Утечка жидких углеводородов при эксплуатации трубопроводов и оборудования может привести к серьезным последствиям. Особенно опасна утечка сжиженных углеводородных газов, так как при их воспламенении часто возникает фронт нестационарного быстрого горения или детонации. Условия возникновения детонации еще недостаточно изучены. До недавнего времени считали, что детонировать могут лишь быстрогорящие смеси водород— воздух, водород — кислород смеси непредельных углеводородов с воздухом и кислородом смеси предельных углеводородов с кислородом. В настоящее время считают, что детонировать могут почти все газообразные углеводороды в смеси с воздухом [45]. Для детонации (взрывов) характерны три особенности создается пик давления, примерно в 20 раз превышающий пик давления обычного взрыва при тех же начальных условиях фронт детонации распространяется со сверхзвуковыми скоростями детонация создает прямой удар разрушительной силы, а не гидростатическое давление. [c.111]


    Высказывается также предположение, что возникновение детонации в двигателе с искровым зажиганием контролируется в основном скоростью предпламенных реакций окисления, предшествующих самовоспламенению [148]. [c.152]

    Таким образом, все исследователи, трактуя несколько по-разному механизм детонации, сходятся в одном возникновение детонации связано с процессами, предшествующими воспламенению последних порций ТВС. Следовательно, детонации могут препятствовать факторы, ускоряющие сгорание последней части ТВС во фронте пламени или затрудняющие возникновение в ней взрывного самовоспламенения. К таким факторам можно отнести усиление турбулизации ТВС уменьшение пути прохож--дения фронта пламени от свечи до наиболее удаленных точек камеры сгорания наличие в последней части ТВС вытесните- [c.152]

    Согласно перекисной теории детонации повышение температуры и давления в цилиндрах двигателя должно способствовать ускорению образования перекисных соединений и быстрейшему достижению критических концентраций, приводящих к детонации. Увеличение продолжительности пребывания последних порций топлива в камере сгорания также должно вести к образованию критических концентраций перекисных соединений и возникновению детонации, [c.70]

    Попытки повысить к. п. д., увеличивая это соотношение, приводят к возникновению детонации. У современных автомобильных двигателей (цикл Отто) степень сжатия 10,5 1. Эта величина была достигнута за счет расширения производства недетонирующих топлив в 1920 г. степень сжатия была равна 4,25 1. Большой резонанс вызвало подавление детонации при добавлении к топливу некоторых химических веществ. Аналогичное явление наблюдалось и в тех случаях, когда топливо смешивалось с большим количеством (20—40%) бензола, этилового спирта или диизо-пропилового эфира. [c.402]

    По характеру и масштабам разрушения было установлено, что возникло нестационарное быстрое горение, перешедшее в детонацию. Скорость распространения фронта горения составила 900— 1200 м/с. Возникновению детонации способствовала турбулизация газового потока в циркуляционных линиях. [c.222]

    Детонация возникает вследствие самовоспламенения части ТВС, до которой фронт пламени от свечи доходит в последнюю очередь. Внешне детонация проявляется в возникновении звонких металлических стуков при работе двигателя на больших нагрузках. При интенсивной детонации мощность двигателя падает и появляется черный дым в отработавших газах. Регулярное возникновение детонации может привести к разрушению и сплавлению головок поршней, к повреждению шатунных и коренных подшипников коленчатого вала. Детонационное сгорание сопровождается резким возрастанием амплитуды вибраций с частотой 5000—6000 Гц [164]. [c.151]


    Возникновению детонации способствуют следующие факторы, увеличивающие скорость развития предпламенных реакций в последней порции топливо-воздушной смеси высокая реакционная способность топлива повышение степени сжатия  [c.151]

    Если в двигателе используется такой бензин, в составе которого преобладают углеводороды, не образующие при окислении большого количества перекисных соединений, то концентрация перекисей. в последних порциях смеси не достигает критических значений, и сгорание заканчивается нормально, без возникновения детонации. [c.66]

    При увеличении числа оборотов коленчатого вала сокращается время пребывания топлива в камере до сгорания за счет повышения скорости распространения фронта пламени, что приводит к снижению конечных концентраций перекисных соединений и затрудняет возникновение детонации. [c.71]

    А — при угле опережения зажигания 20° до ВМТ и нормальном сгорании Б — при угле опережения зажигания 19,2° до ВМТ п сгорании с детонацией X— искра Д — место возникновения детонации. [c.68]

    Алюминиевые поршни и головка блока цилиндров лучше отводят тепло, чем чугунные, поэтому условия для возникновения-детонации в двигателях с алюминиевыми поршнями и благоприятны. [c.71]

    Отложения нагара в камере сгорания затрудняют отвод тепла и тем самым способствуют возникновению детонации. [c.71]

    Воспламенение рабочей смеси от гор ячей точки до появления искры зажигания действует на процесс сгорания так же, как установка более раннего угла опережения зажигания, т. е. способствует возникновению детонации. С другой стороны, детонационное сгорание вызывает значительное повышение температурного режима двигателя, способствует появлению горячих точек в камере сгорания и возникновению калильного зажигания. Таким образом, калильное зажигание и детонация тесно связаны между собой и часто оба явления имеют место в двигателе в одно и то же время, но механизм протекания этих процессов и меры борьбы с ними существенно различаются. [c.72]

    Сущность метода детонационных испытаний сводится к следующему. На реальном эксплуатационном режиме работы двигателя, при котором создаются наиболее благоприятные условия для возникновения детонации (полная нагрузка, нормальный тепловой режим, нормальная регулировка состава смеси), определяют зависимость угла опережения зажигания, вызывающего начало слышимой детонации, от числа оборотов двигателя на ряде смесей эталонных [c.95]

    При эксплуатации двигателя по мере отложения нагара в камере сгорания создаются более благоприятные условия для возникновения детонации, и [c.265]

    В результате первой серии опытов было обнаружено, что от перечисленных выше источников инициирования детонационная волна возникает только в пленках масла индустриальное 12. Минимальная толщина пленки, ири которой возможно возникновение детонации, изменяется в пределах 30—10 мкм в зависимости от начального давления кислорода и мощности источника зажигания. При толщине пленки 8—7 мкм и давлении 1,6 Мн м (16/сГ/сж ) происходит интенсивное горение без перехода в детонацию. При уменьшении толщины пленки этого масла интенсивного горения не наблюдается и мембрана остается целой. [c.76]

    Бензин в смеси с воздухом должен сгорать в камерах сгорания с нормальной скоростью без возникновения детонации на всех режимах работы двигателя в любых климатических условиях. Желательно, чтобы бензин имел наиболее высокую теплоту сгорания, минимальную склонность к образованию нагара и к калильному зажиганию. Продукты сгорания бензино-воздушной смеси не должны ыть токсичными и коррозионно-агрессивными. [c.8]

    Возможность возникновения детонации в двигателе решающим образом зависит от способности углеводородов бензина сопротивляться окислению в паровой фазе с образованием пероксидов. Чем труднее окисляются бензиновые углеводороды в паровой фазе, тем медленнее накапливаются пероксиды и тем труднее возникает детонация. Это важное эксплуатационное свойство бензинов получило название детонационной стойкости. [c.10]

    Представление о детонации как о взрывном распаде пероксидных соединений позволяет объяснить влияние многих конструктивных параметров двигателя на его требования к детонационной стойкости применяемых топлив. Все факторы, способствующие повы-щению температуры в камере сгорания и увеличению времени пребывания последних порций топлива в камере сгорания, вызывают накопление пероксидных соединений, облегчают возникновение детонации, т. е. требования двигателя к детонационной стойкости применяемого топлива ужесточаются. [c.13]

    Смесь бензина с воздухом полностью в камерах сгорания двигателя не сгорает. Некоторые продукты окислительных превращений углеводородов и неуглеводородных примесей способны отлагаться на стенках камер сгорания, где под действием высоких температур превращаются в твердые, трудно удаляемые отложения, называемые нагаром. Нагар имеет очень малую теплопроводность, близкую к теплопроводности асбеста, поэтому охлаждение камер сгорания ухудшается и создаются условия, облегчающие возникновение детонации. [c.28]


    Применение на двигателях бензина с октановым числом, меньшим требуемого, недопустимо, так как это приводит к возникновению детонации в цилиндрах, которая может вызвать перегрев двигателя, привести его к ускоренному износу и повышению расхода бензина, а также и к серьезным нарушениям в работе двигателя и даже отказам из-за прогара прокладки головки блока цилиндров, детонационного разрушения днищ поршней и т.д. [c.8]

    Согласно теории окисления через перекиси скорость химических реакций процесса горения углеводородных смесей обусловливается интенсивностью возникновения активных перекисей, с одной стороны, и быстротой их исчезновения—с другой. В период индукции в горючем происходит первичное накопление перекисей. Увеличение количества молекул перекиси сопровождается повышением числа экзотермических реакций окисления, что вызывает возрастание температуры и, следовательно, большую интенсивность возникновения новых молекул перекиси. При достаточной концентрации активных перекисей скорость реакции окисления настолько возрастает, что появляется пламя. Между моментом достижения достаточной для воспламенения концентрации перекисей и самим воспламенением протекает некоторый интервал времени, в результате чего горючая смесь в момент появления пламени оказывается пересыщенной перекисями, почему реакция принимает чрезвычайно бурный характер, т. е. возникает детонация. Очевидно, что то горючее будет наиболее склонно к детонации, у которого возрастание скорости образования перекисей прл повышении температуры будет происходить наиболее интенсивно, так как в этом случае будет увели-чиваться возможность пересыщения смеси перекисями в момент воспламенения. Влияние перекисей на возникновение детонации в двигателе было показано Каллендаром экспериментально. Он испытывал влияние на работу двигателя добавляемых к топливу стойких (перекись бензоила) и нестойких (перекись ацетила, перекись метилэтилкетона и др.) перекисей и отметил различие в их влиянии. [c.354]

    К присадкам этой группы относятся вещества, улучшающие процесс сгорания топлива в двигателе препятствующие возникновению детонации (антидетонаторы) облегчающие самовоспламенение топлив в дизельных двигателях (повышающие цетановое число) и другие. [c.278]

    Однако причины и условия возникновения стуков в двигателях с воспламенением от сжатия прямо противоположны тем, которые обусловливают возникновение детонации в двигателе с воспламенением от искры. [c.71]

    В отличие от дефлаграции, скорость детонационного горения не зависит от кинетики реакции в пламени. Особенности кинетики существенны только для самой возможности возникновения детонации. Скорость детонации зависит только от калорийности горючей среды в расчете на единицу массы и от отношения теплоемкостей у для продуктов реакции. Влияние исходного состава на скорость детонации определяется его влиянием на указанные величины. Хотя ширина зоны, в которой происходит изменение давления, имеет порядок длины свободного пробега молекул, химическая реакция в детонационной волне требует многих столкновений это определяет сравнительно большую ширину зоны реакции при детонации. Расчет и опыт показывают, что она много больше, чем при дефлаграции, порядок ее величины — 1 см. [c.36]

    Детонация может возникнуть не только при инициировании взрывом, но и при воспламенении искрой или другим тепловым источником. Другими словами, обычное горение может переходить в детонационное. Так, возникновение детонации газов в трубах можно объяснить следующим образом. При нормальном горении фронт пламени, имеющий сферическую или плоскую форму, передвигается в газе с постоянной для данных условий ско )остью. При этом передача тепла из зоны горения в зону свежего газа происходит сравнительно медленно (диффузией и теп.юпроводностью). [c.133]

    Нормальная скорость пламени ие превосходит нескольких метров в секунду, а для многих горючих систем, способных детонировать — десятков сантиметров в секунду. Необходимую для возникновения детонации большую скорость газового потока создают расширение при реакции и турбулизация газа. При адиабатическом сгорании в закрытой трубе горючая среда движется но [c.36]

    Возможность ускорения горения в трубах и возникновения детонации делает газопроводы и длинные аппараты с неровной, шероховатой внутренней поверхностью очень опасными объектами, если в них могут образоваться взрывчатые газовые системы. Эта опасность особенно возрастает в случае, когда такая труба — потенциальный очаг детонации — соединена с большой емкостью, заключающей тот же взрывчатый газ. [c.38]

    При гашении в узких каналах пламени, в процессе распространения которого горение приняло характер детонации, наблюдается следующая закономерность. Предельная величина критерия Пекле, построенная из параметров горючей системы для исходного, до возникновения детонации состояния, т. е. начальных давления и температуры и нормальной скорости пламени, имеет обычное для дефлаграции значение — около 65. Значительное возрастание давления и скорости горения в детонационной волне никак не сказывается на процессе гашения. Причина заключается в том, что процесс начинается с разрушения детонационной волны, гашение пламени происходит в среде, состояние которой совпадает с исходным. [c.106]

    При слишком высоких степенях сжатия горючей смеси, состоящей из воздуха и СНГ, возможно преждевременное воспламенение и, следовательно, возникновение детонации. Обычно степень сжатия в дизельных двигателях равна 12—20, т. е. находится вне пределов безопасных степеней сжатия горючих смесей воздуха с СНГ. По этой причине количество СНГ, добавляемого в сжимаемый воздух дизельного двигателя, должно ограничиваться уровнем, обеспечивающим устойчивую и ровную работу двигателя. На практике доля замещающих дизельное топливо СНГ обычно составляет 40 %. Доля СНГ, используемых для повышения мощности дизельного двигателя, не должна превышать 25 7о- Если доля СНГ в топливной смеси превышает 25—40 %. возникают детонация, неустойчивая работа и прочие явления, ухудшающие работу дизельных двигателей. [c.222]

    Способность топлива противостоять детонации может характеризоваться и максимальной степенью сжатия, которая достигается на стандартном двигателе при стандартной электроискровой системе зажигания без возникновения детонации (см. гл. 11). Показатель цетанового числа всех низкокипящих видов топлива очень низок, что является отрицательным фактом. [c.332]

    Вероятность возникновения детонации при работе на данном двигателе суш,ественно зависит и от химического состава применя — емото автобензина наиболее стойки к детонации ароматические и изопарафиновые углеводороды и склонны к детонации нормальные 1[арафиновые углеводороды бензина, которые легко окисляются кислородом воздуха. [c.104]

    Г. С. Шимонаев считает [13], что для возникновения детонации необходимы два условия 1) в топливо-воздушной смеси должны протекать предпламенные реакции, соответствующие реакциям переходной зоны самовоспламенения, и 2) суммарная скорость экзотермических предпламенных реакций должна превышать некоторое критическое значение. Эти условия возникают при определенной степени сжатия, когда давление и температура последней части ТВС достигают таких значений, при которых ее самовоспламенение сопровождается самоускорением волн сжатия и появлением детонационных волн. [c.152]

    Возможность возникновения детонации при взрыве газо-воздушных или газо-кислородных смесей, которые находятся в помещениях большого объема илн в виде газового облака, в настоящее время мало исследована, хотя в мировой практике известны взрывы таких смесей в помещениях, квалифицировавш и е с я как детонация. Например, [c.35]

    Сущность метода стендовых детонационных испытаний автомобильного бензина заключается в следующем. На эксплуатационном режиме работы двигателя, при котором создаются наиболее благоприятные условия для возникновения детонации (полная нагрузка, нормальный тепловой режим, нормальная регулировка состава смеси), определяют зависимость угла опережения зажигания, вызьгаающее начало слышимой детонации, от числа оборотов двигателя на ряде смесей эталонных топлив. По результатам испытаний строят первичную детонационную характеристику двигателя (рис. 9, а). Аналогичным образом снимается первичная детонационная характеристика испытуемого бензина, которую совмещают с первичной детонационной характеристикой двигателя (рис. 9, б). [c.34]

    Эта связь вполне понятна в свете изложенных выше исследований, констатировавших зависимость детонационной волны горения от реакций окисления п образования перекисей. Повидимому, реакции, предшествующие образованию холодных пламен, при низких температурах и давлениях имеют ту же природу, что и реакции, идущие при высоких температурах и давлениях перед возникновением детонации в моторе. Холодные пламена в смесях углеводородов с кислородом или воздухом, как следует из работ М. Б. Неймана с сотр., могут быть исполь-юваны и промышленностью органического синтеза для получения больших количеств альдегидов, кислот, спиртов и т. д. Продукты окисления в холодном пламени сложной смеси углеводородов моторного топлива СК были исследованы А. Д. Петровым, Е. Б. Соколовой и ]М. С. Федотовым [23]. Ими были идентифицированы и количественно определены разнообразные кислородсодержащие соединения (кислоты, альдегиды, сложные эфиры, спирты, ацетали, кетоны), находящиеся I водном слое. Установлено, что среди продуктов окисления альдегидов (муравьиного и уксусного) и спиртов (метилового и этилового), образующихся, очевидно, путем распада первичных продуктов окисления, преобладают перекиси газообразных углеводородов — продуктов крекинга углеводородов моторного топлива. [c.345]

    Единственным слабым пунктом теории перекисей является то обстоятельство, что ненасыщенные углеводороды обладают значительно меньшей склонностью к детонации, чем парафины однако они имеют ярко выраженную склонность образовывать перекиси. Это видимое противоречие приходится объяснять тем, что степень детонации может обусловливаться не столько количеством, сколько характером перекисерг, а также дополнять теорию перекисей —теорией свободного водорода, выдвинутой Льюисом. Последний считает первичным процессом окисления парафинов дегидрогенизацию их, в результате чего образуются ненасыщенные углеводороды и водород. Последний и является основной причиной возникновения детонации в двигателе. Можно думать, что получающийся в результате дегидрогенизации водород находится в атомарном состоянии, т. е. что процесс распада парафиновых углеводородов сопровождается химической активацией молекул водорода. Как известно, атомарный водород может мгновенно соединяться с кислородом, причем это соединение связано с выделением огромного количества энергии. Таким образом, получающееся соедпнение можно рассматривать как активный центр, который может активировать молекулы горюч й смеси и тем самым сильно способствовать ускорению химической реакцпи. Подтверждением теории свободного водорода (как дополнительного фактора-детонации) и является хорошо известная большая склонность к детонации нормальных углеводородов парафинового ряда по сравнению с нормальными углеводородами олефинового ряда. Можно также полагать, что в случае непосредственно окнсляел1ых ненредельных углеводородов первично получающиеся нестойкие перекиси успевают превратиться в стойкие перекиси, тогда как в случае нос родстве и но окисляемых предельных углеводородов этот процесс завершиться не успевает. Это том более важно, что именно нестойкие формы перекисей глав- [c.356]

    Возникновение детонации. Детонационный режим горения возникает во взрывчатой среде при ее сжатии достаточно сильной ударной волной. Такая волна может создаваться В1нешним инициирующим импульсом сжатия, например, от заряда твердого или жидкого взрывчатого вещества. Известны случаи возникновения детонации по этому механизму иа промышленных объектах при воздушных бомбардировках во время войны. [c.36]

    Преддетонационный разгон пламени в трубе характеризуется расстоянием от точки зажигания до места возникновения детонации. Увеличение нормальной скорости пламени и усиление турбулизации газа приводит к сокращению иреддетонацион ного расстояния. Абсолютное значение этого расстояния возрастает с увеличением диаметра трубы, однако если его измерять диаметрами трубы, детонация легче возникает в широких трупах. Для гладких труб преддетоиационное расстояние, как правнло, равно нескольким десяткам диаметров. [c.37]

    Очевидно, что взрывобезопасность индивидуального ацетилена можно обеспечивать только на основе второго и третьего принципов. Взрывоопасность ацетилена значительно возрастает по мере повышения давления. Наиболее опасны процессы компримирования ацетилена и заполнения им баллонов. В некоторых случаях оборудование, предназначенное для работы с ацетиленом высокого давления, изготовляется особо прочным, рассчитанным на давление недетонационного сгорания. Ввиду возможности возникновения детонации, а также роста давления сверх адиабатического и яри недетонационном горении такая система не гарантирует сохранности оборудования. Его безопасность следует обеспечивать тщательным контролем за невозможностью возникновения поджигающих импульсов. [c.87]

    Так как возникновение детонации и поведение топлив связано с работой двигателя, то оценка их антидетонационных качеств может быть выражена посредством изменения какого-нибудь параметра двигателя, влияющего на возникновение детонации. С этой целью Рикардо ввел получившее широкое распространение понятие о наивысшей полезной степени сжатия (НПСС), а затем о бензольном и толуольном эквивалентах, явившихся исходными при разработке современных методов оценки антидетонационных качеств топлив. Позднее в разных странах и лабораториях был предложен ряд других методов оценки. [c.605]


Смотреть страницы где упоминается термин Возникновение детонации: [c.105]    [c.103]    [c.104]    [c.70]    [c.70]    [c.161]    [c.18]   
Смотреть главы в:

Взрывобезопасность паро-газовых систем в технологических процессах -> Возникновение детонации




ПОИСК





Смотрите так же термины и статьи:

Детонация

возникновение



© 2025 chem21.info Реклама на сайте