Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная биотехнология

    Каждая глава завершается подробным резюме и списком вопросов для повторения. Мы надеемся, что это поможет усвоить прочитанное. Все ключевые идеи иллюстрируются тщательно подобранными цветными рисунками (всего их более 200) мы убеждены, что один рисунок может сказать больше, нежели тысяча слов. Гл. 1 знакомит читателя с основами молекулярной биотехнологии и некоторыми коммерческими аспектами, а следующие пять глав (гл. 2-6) — с ее методологией. Все вместе эти главы подготовят читателя к восприятию материала всех последующих глав. В гл. 7-12 части II рассмотрены способы получения ценных метаболитов, вакцин, лекарственных веществ и продуктов, использующихся для диагностики, а также методы биодеградации удобрений и пестицидов. В гл. 13 описаны способы крупномасштабного культивирования генетически измененных микроорганизмов с целью получения коммерческих продуктов. Часть. III посвящена молекулярной биотехнологии растений и животных (гл. 14 и 15). Гл. 16 и 17 знакомят читателя с применением технологии рекомбинантных ДНК для идентификации генов человека, ответственных за развитие некоторых заболеваний, и подходами к генной терапии. В последней, IV части рассмотрены вопросы регламентации исследований в области молекулярной биотехнологии, оформления патентов на различные продукты и изобретения. [c.10]


    Молекулярная биотехнология — это увлекательнейшая область научных исследований, с появлением которой произошел настоящий переворот во взаимоотношениях человека с живой природой. В ее основе лежит перенос единиц наследственности (генов) из одного организма в другой, осуш ествляемый методами генной инженерии (технология рекомбинантных ДНК). В большинстве случаев целью такого переноса является создание нового продукта или получение уже известного продукта в промышленных масштабах. В ч. I мы познакомим читателя с концепциями молекулярной биотехнологии и теми микроорганизмами, которые в ней используются, с основами молекулярной биологии и методологией рекомбинантных ДНК. Будут описаны такие методы, как химический синтез генов, полимеразная цепная реакция (ПЦР), определение нуклеотидной последовательности (секвенирование) ДНК. Помимо успешного клонирования нужного гена очень важно обеспечить его правильное функционирование в организме нового хозяина, поэтому мы остановимся также на способах оптимизации работы клонированных генов в про- и эукариотических системах. И наконец, мы рассмотрим, как можно улучшить свойства конечных продуктов, модифицируя клонированные гены путем введения в них специфических нуклеотидных замен (мутагенез in vitro). В целом материал, изложенный в первой части, служит фундаментом, который позволяет понять различные аспекты конкретных применений молекулярной биотехнологии. [c.13]

    Биологические системы, использующиеся в молекулярной биотехнологии [c.24]

    Молекулярная биотехнология как новая область исследований сформировалась в конце 1970-х гг. на стыке технологии рекомбинантных ДНК и традиционной промышленной микробиологии. Современное общество неплохо осведомлено о проблемах молекулярной биотехнологии. Так или иначе об этой науке знают практически все. Кто-то видел фильм Парк Юрского периода с его потрясающими, искусно нарисованными, но соверщенно несостоятельными с научной точки зрения клонированными динозаврами. Кто-то прочитал в газетах о том, что на рынке появились новые, биотехнологические помидоры с большим сроком хранения. А кто-то слышал рассуждения критически настроенного знатока о страшных последствиях генной инженерии, ожидающих нас в будущем. В этой книге мы попытаемся объяснить, что собой представляет эта научная дисциплина на самом деле, как проводятся биотехнологические исследования и как они могут повлиять на нашу жизнь. [c.9]


    За четыре года, прошедших со времени выхода в свет первого издания книги Молекулярная биотехнология принципы и применение , в области биотехнологии было сделано огромное количество открытий. На рынке появилось множество новых генноинженерных продуктов (например, вакцин и лекарственных препаратов). Рутинной практикой клинических лабораторий стало использование иммунологических методов диагностики и методов, основанных на применении полимеразной цепной реакции. Открыты и охарактеризованы многие гены, ассоциированные с различными заболеваниями человека, неизмеримо возрос объем клинических испытаний в области генной терапии. Построены подробные генетические и физические карты хромосом человека впервые из дифференцированной соматической клетки клонировано жизнеспособное млекопитающее. Производство одного из трансгенных растений, сои, поставлено на коммерческую основу. [c.7]

    В первом издании мы описали принципы и применение молекулярной биотехнологии в широком биологическом контексте - в той форме, которая представлялась нам наиболее интересной и информативной. С тех пор мы получили много полезных замечаний от наших коллег, аспирантов и студентов из разных стран. Стараясь сохранить прежний подход и в то же время удовлетворить пожелания многих читателей, мы обновили, расширили и существенно переработали нашу книгу. Мы надеемся, что нам удалось передать ту волнующую атмосферу, в которой совершаются открытия в молекулярной биотехнологии, и в то же время ясно изложить ее основы, разъяснить смысл современных открытий и то, как их можно использовать для производства товаров и услуг . В книге появилась новая глава, где рассмотрены микроорганизмы, обычно использующиеся в молекулярной биотехнологии. Кроме того, отдельная глава посвящена описанию основ молекулярной биологии. Значительно расширены главы по молекулярной генетике человека, генной терапии, биотехнологии растений, охватывающие самые последние достижения в этих областях. Пересмотрены главы, посвященные диагностическим системам и вакцинам. Кроме того, примерно в 1,5 раза увеличено число рисунков и таблиц, обновлен и расширен словарь терминов. Как мы надеемся, это позволит [c.7]

    Книга Молекулярная биотехнология принципы и применение написана как учебник по биотехнологии, технологии рекомбинантных ДНК и генной инженерии. В ее основу положен курс лекций по биотехнологии, который мы читали на протяжении 12 лет студентам старших курсов и аспирантам биологических и инженерных специальностей Университета Ватерлоо. Книга предназначена для студентов, знакомых с основами биохимии, молекулярной генетики и микробиологии, хотя мы понимаем, что вряд ли они успели освоить все эти дисциплины до того, как начали заниматься биотехнологией. Поэтому, приступая к изложению той или иной темы, мы сначала рассматриваем ее основы и лишь затем переходим к деталям. [c.9]

    Главное внимание в книге уделено тому, как с помощью технологии рекомбинантных ДНК можно создавать нужные человеку продукты. Там, где это возможно, мы старались проиллюстрировать основные теоретические концепции конкретными результатами и методиками, уже применяющимися на практике. Из лавинообразного потока научных публикаций мы выбирали в качестве примеров те работы, которые не только иллюстрируют определенные положения, но и формируют у читателя твердую научную базу, позволяющую ему ориентироваться в узкоспециальных вопросах молекулярной биотехнологии. Конечно, мы понимаем, что эта область исследований развивается чрезвычайно быстро и некото- [c.9]

    Возникновение молекулярной биотехнологии [c.16]

Таблица 1.1. История развития молекулярной биотехнологии Таблица 1.1. <a href="/info/40801">История развития</a> молекулярной биотехнологии
Рис. 1.2. Молекулярная биотехнология использует достижения многих областей науки и позволяет создавать широкий ассортимент коммерческих продуктов и методов. Рис. 1.2. <a href="/info/1549403">Молекулярная биотехнология использует</a> достижения многих <a href="/info/651078">областей науки</a> и позволяет создавать широкий ассортимент коммерческих продуктов и методов.
    Очень редко новые научные дисциплины возникают на пустом месте как правило, их фундаментом служат различные области науки. Что касается молекулярной биотехнологии, то ее биотехнологическая составляющая относится к сфере промышленной микробиологии и химической инженерии, а молекулярная - к областям молекулярной биологии, молекулярной генетики бактерий и энзимологии нуклеиновых кислот (табл. 1.1). В широком смысле молекулярная биотехнология пользуется достижениями самых разных областей науки и применяет их для создания самых разных коммерческих продуктов (рис. 1.2). [c.19]

    Конечной целью всех биотехнологических исследований является создание коммерческого продукта. Следовательно, молекулярная биотехнология тесно связана с экономикой. Конечно, [c.19]


    К середине 90-х годов на рынке появилось более десятка новых биотехнологических лекарственных препаратов, более 100 препаратов сейчас проходят клинические испытания, еще свыше 500 находятся на стадии разработки. Создано и выпушено на рынок множество новых молекулярно-биотехнологических продуктов, повышающих урожайность сельскохозяйственных культур и продуктивность сельскохозяйственных животных. Ежегодный доход молекулярно-биотехнологической индустрии увеличился с 6 млн. долларов в 1986 г. до примерно 30 млрд. в 1996 г. По оценкам, к 2000 г. объем продаж продуктов, изготовленных с применением молекулярной биотехнологии, превысит 60 млрд. долларов в год. И хотя в целом доходность биотехнологического бизнеса оказалась не такой высокой, как ожидалось, энтузиазм инвесторов не ослабевает и свидетельствует о том, что молекулярная биотехнология — по крайней мере по их представлениям - имеет блестящие перспективы. [c.20]

    Большая часть коммерческих разработок в области молекулярной биотехнологии приходится на Соединенные Штаты. В других странах, где инвестиционный климат не столь благоприятен и бизнес менее активен, главную роль в создании молекулярно-биотехнологических предприятий играют крупные корпорации и государство. Так, правительство Японии объявило биотехнологию стратегической индустрией и национальным приоритетом. За дело взялись крупные японские корпорации. Вначале им не хватало собственных кадров, и первые исследования проводились в сотрудничестве с американскими университетами и компаниями. Сейчас эти корпорации приобрели необходимый опыт и сами проводят молекулярно-био-технологические разработки и создают генно-инженерные продукты. [c.20]

    Европейская биотехнологическая индустрия тоже неуклонно развивается к 1995 г. в странах Европы было создано более 600 биотехнологических компаний. В экономически менее развитых странах роль локомотива в развитии национальной молекулярно-биотехнологической индустрии взяло на себя государство. Стимулом здесь служила уверенность в том, что молекулярная биотехнология — самая революционная из всех технологий XX века . Ни одна страна не хотела оказаться лишенной всех тех благ, которые сулило ее развитие. [c.20]

    Сейчас, в конце второго десятилетия своего развития, молекулярная биотехнология фактически стала одной из отраслей промышленности, хотя вначале некоторые ученые считали ее чисто эзотерическим направлением. Без сомнения, в ближайшие десять лет коммерческую молекулярную биотехнологию ожидает бурный рост, но именно поэтому давать какие-то конкретные прогнозы здесь весьма рискованно. [c.20]

    За рекордно короткое время молекулярная биотехнология превратилась в многопрофильное научное предприятие, в равной степени коммерческое и академическое. Ей посвящено огромное количество научных и деловых публикаций, в университетах всего мира студентам и аспирантам читают учебные курсы по молекулярной биотехнологии. Об энтузиазме, с которым написан отчет Отдела по оценкам новых технологий США за 1987 г., свидетельствует следующее заявление Молекулярная биотехнология знаменовала собой еще одну революцию в науке, которая могла бы изменить жизнь и будущее... людей так же радикально, как это сделала Промышленная революция два века назад и компьютерная революция в наши дни. Возможность целенаправленного манипулирования генетическим материалом... обещает великие перемены в нашей жизни . [c.22]

    Молекулярная биотехнология сразу захватила воображение общества. При участии частного капитала было создано много мелких компаний, занимающихся генным клонированием (технологией рекомбинантных ДНК). Правда, на то, чтобы предложить свою продукцию рынку, этим компаниям потребовалось времени несколько больше, чем ожидалось, но уже сейчас множество биотехнологических продуктов имеется в продаже и еще больше появится в ближайшем будущем. [c.22]

    К числу наиболее важных для молекулярной биотехнологии методов, помимо клонирования генов, относятся методы химического синтеза ДНК, секвенирование ДНК и полимеразная цепная реакция (ПЦР). [c.102]

    Молекулярная биотехнология скрупулезно изучалась на предмет возможных негативных последствий ее распространения для человечества, поскольку спектр ее воздействия неограниченно широк. Рассматривались такие волнующие об- [c.22]

    Сравните биотехнологию и молекулярную биотехнологию. [c.23]

    В последующих главах мы детально опишем различные высокоспециализированные биологические системы. В частности, в гл. 7 будет рассмотрена система вирус насекомых-клетки насекомьгх , которая используется для продукции аутентичных белков, кодируемьЕХ клонированными генами, а в гл. 19 -генетическая модификация домашних животных (коров, овец, свиней). В настоящей главе мы дадим краткое описание наиболее значимых для молекулярной биотехнологии систем, которые также будут рассматриваться в последующих главах. [c.24]

    Какие опасения связаны с развитием молекулярной биотехнологии  [c.23]

    Раскройте смысл утверждения, что молекулярная биотехнология является многопрофильной наукой . [c.23]

    Назовите некоторые из потенциальных возможностей, предоставляемых молекулярной биотехнологией. [c.23]

    Почему в молекулярной биотехнологии применяется так много разных биологических систем  [c.28]

    Олигонуклеотиды, синтезированные химическими методами, находят широкое применение в молекулярной биотехнологии. Их используют в качестве зондов при ДНК-гибридизации, линкеров, соединяющих разные молекулы ДНК в экспериментах по клонированию, праймеров при секвенировании ДНК или осуществлении сайт-специфического мутагенеза клонированных генов-мишеней. [c.85]

    Часто некоторые клетки перевиваемых первичных клеточных культур претерпевают генетические изменения, в результате которых ускоряется их рост. Культуры клеток, которые при этом приобретают селективные преимущества, оказываются способными к неофаниченному росту in vitro и называются устойчивыми клеточными линиями. Одни клеточные линии сохраняют основные биохимические свойства исходных клеток, другие нет. У больщинства клеток, способных к неофаниченному росту, имеются значительные хромосомные изменения, в частности отмечается увеличение числа одних хромосом и потеря других. В молекулярной биотехнологии устойчивые клеточные линии иногда используют для размножения вирусов и для выявления белков, которые кодируются клонированными последовательностями ДНК. Кроме того, они применяются для крупномасиггабного производства вакцин и рекомбинантных белков. [c.28]

    Создание новых методов — это необходимая предпосылка развития любой отрасли науки. Они позволяют получать недоступную прежде информацию, что в свою очередь приводит к более глубокому пониманию сути наблюдаемых явлений и стимулирует дальнейшие исследования, порождающие новые открытия. Что касается молекулярной биотехнологии, то ее основой стали такие мощные методы, как секвенирование ДНК и ПЦР. [c.89]

    Г54 Молекулярная биотехнология. Принципы и применение. Пер. с англ. — М. Мир, 2002. — 589 с., ил. 18ВК 5-03-003328-9 [c.4]

    Книга, которую вы держите в руках, — это превосходное руководство по молекулярной биотехнологии с подробным изложением ее принципов, методов и сфер применения. В ней обобщен многолетний опыт чтения лекций по этому предмету студентам разных специальностей одного из ведугцих университетов Канады. До сих пор в нашей стране не было отечественных или переводных изданий, которые одновременно охватывали бы все разделы биотехнологии и все объекты, к которым приложимы биотехнологические методы микроорганизмы, растения, животные, в том числе и человек. А между тем потребность в таком учебнике весьма велика, поскольку биотехнология входит в круг интересов представителей многих специальностей, имеющих разное базовое образование. [c.5]

    Книга состоит из четырех частей. В первой из них четко и ясно изложены основы молекулярной биологии, во второй речь идет о молекулярной биотехнологии микроорганизмов, в третьей - о биотехнологии эукариотических систем, Б том числе человека (молекулярная генетика человека и генная терапия). Особый интерес для российского читателя представляет четвертая часть, посвященная контролю и патентованию в области молекулярной биотехнологии. Эти вопросы почти не затрагиваются ни в учебниках, ни в образовательном процессе в нашей стране, хотя в биотехнологии, как и в любой прикладной науке, новые разработки дают дивиденды только в том случае, когда они защищены патентом. Авторы обсуждают законодательную базу использования генноинженерных продуктов в пищевой и фармацевтической промышленности, применения рекомбинантных организмов в сельском хозяйстве, нормативные акты, относящиеся к предварительным испытаниям этих организмов, требования, предъявляемые к ним при крупномасштабном применении. Детально рассматриваются правила патентования впервые секвениро- [c.5]

    На стыке технологии рекомбинантных ДНК и биотехнологии возникла новая область исследований, динамичная и высококонкурентоспособная, — молекулярная биотехнология. Эта молодая дисциплина, как и молекулярная биология в период своего становления, весьма амбициозна, заявляемые ею притязания не всегда соответствуют реальным возможностям. Ее стратегия и экспериментальная база претерпевают быстрое изменение, одни подходы все время вытесня- [c.18]

    Биотехнология в значительной мере нацелена на получение с помощью микроорганизмов продуктов, имеющих коммерческую ценность. До эпохи рекомбинантных Д НК самым эффективным методом повышения продуктивности организмов был мутагенез с последующей селекцией оптимального штамма-продуцента. Это длительный, трудоемкий, высокозатратный и небезошибочный процесс, позволяющий улучшить лишь немногие из присущих природному организму свойств. В то же время технология рекомбинантных ДНК - это быстродействующий, эффективный, мощный инструмент, обеспечивающий создание микроорганизмов с заранее заданными генетическими характеристиками. Более того, этот инструмент может работать не только с микроорганизмами, но также с растениями и животными. Союз технологии рекомбинантных ДНК и биотехнологии породил очень динамичную, исключительно интересную дисциплину - молекулярную биотехнологию. [c.22]

    В молекулярной биотехнологии используется множество различных биологических систем -как для осуществления генетических манипу- [c.28]

    Технологический прогресс в любой области науки всегда стимулирует ее дальнейшее развитие. С появлением новых технологий появляется возможность ставить новые эксперименты и облегчается проведение старых. Становление молекулярной биотехнологии как науки обязано целому ряду технологических разработок многие из них ныне широко применяются как в крупных исследовательских центрах, так и небольших научных коллективах. Теперь не составляет особого труда химически синтезировать одну молекулу ДНК, определить нуклеотидную последовательность другой и амп-лифицировать с помощью полимеразной цепной реакции третью. Все это стало возможным благодаря той информации, которая была получена в ходе основополагающих исследований как самой ДНК, так и механизма ее репликации. Эти экспериментальные подходы стали неотъемлемой частью молекулярного клонирования - процедуры, позволяющей выделять из ДНК нужные фрагменты, охарак-теризовывать их и производить с ними разнообразные манипуляции. [c.80]

    В конце 70-х-начале 80-х гг. молекулярная биотехнология стала привлекать к себе внимание общественности и крупных инвесторов. Одним из биотехнологических продуктов был интерферон, на который в то время возлагали надежды как на чудодейственное средство против множества вирусных заболеваний и рака. О вьщелении кДНК интерферона человека и его последующей экспрессии в Es heri hia oli сообщали газеты и журналы всего мира. [c.215]


Смотреть страницы где упоминается термин Молекулярная биотехнология: [c.1]    [c.19]    [c.20]    [c.20]    [c.22]    [c.22]    [c.22]    [c.22]    [c.24]    [c.27]   
Молекулярная биотехнология принципы и применение (2002) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Биотехнология



© 2025 chem21.info Реклама на сайте