Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микроорганизмы эволюция

    Водород — самый распространенный элемент Вселенной. Он составляет основную массу Солнца, звезд и других космических тел. В недрах звезд на определенной стадии их эволюции протекают разнообразные термоядерные реакции с участием водорода. Они и являются источником неисчислимого количества энергии, излучаемого звездами в космическое пространство. Распространенность водорода на Земле существенно иная. В свободном состоянии на Земле он встречается сравнительно редко — содержится в нефтяных и горючих газах, присут ствует в виде включений в некоторых минералах. Некоторое количество водорода появляется постоянно в атмосфере в результате разложения органических веществ микроорганизмами, но затем водород быстро перемещается в стратосферу вследствие его легкости. Основная масса водорода в земной коре находится в виде химических соединений с другими элементами большая часть его связана в форме воды, глин и углеводородов последние составляют основу нефти и входят составной частью в природные горючие газы. Кроме того, растительные и животные (организмы содержат сложные вещества, в состав которых обязательно входит водород. Общее содержание водорода составляет 0,88% массы земной коры, и по распространенности на Земле он занимает 9-е место. [c.293]


    Первые два типа реакций объединяют иногда под общим термином катагенез , в то время как окислительное воздействие микроорганизмов называют гипергенезом. В последние годы существенно расширились представления о действительных возможностях биодеградации, которая особенно значительно изменяет химический тип нефтей в залежах. Однако вначале рассмотрим превращения нефтей, протекающие нод воздействием температурного фактора,— термолиз, или термическая эволюция (старение) нефти. [c.215]

    Бактерии, грибы, актиномицеты инициируют и стимулируют процессы коррозии и старения продуктами своей жизнедеятельности, а при прямом или комбинированном воздействии (совместно с другими факторами среды) вызывают особый вид разрушения материалов и покрытий — биоповреждения. В настоящее время отечественные и зарубежные исследователи подчеркивают, что биоповреждения представляют собой эколого-технологи-ческую проблему. Она является комплексной в научном плане и многоотраслевой — в практическом. Основа научных исследований проблемы базируется на законах биологии и химии, материаловедческих и природоведческих дисциплинах. Рациональная борьба с биоповреждениями немыслима без изучения экологии микроорганизмов, особенностей их существования, а также без знаний физико-химических свойств материалов и условий эксплуатации машин, оборудования и сооружений, без понимания вопросов природоиспользования и необходимости защиты природы от загрязнений. За несколько миллиардов лет эволюции жизни на земле микроорганизмы получили способность быстрой адаптации к изменяющимся условиям их обитания и источникам питания. Только этим можно объяснить активность ряда микроорганизмов в отношении созданных человеком конструкций, приводящую к разрушению последних. [c.3]

    Добавление в питательную среду а-аминоадипиновой кислоты предотвращает ингибирующий эффект лизина и активирует биосинтез пенициллина в отсутствие лизина. Кроме ретроингибирования биосинтез многих антибиотиков тормозится высокими концентрациями своих же антибиотиков. Следует отметить, что в процессе эволюции микроорганизмы выработали механизмы защиты от действия собственных антибиотиков. Эта проблема успешно решается [c.68]

    Как указывалось ранее, незаменимые аминокислоты не синтезируются в организме человека и животных, их необходимо включать в состав пищи для обеспечения оптимального роста и для поддержания азотистого баланса. Для человека являются незаменимыми следующие аминокислоты лейцин, изолейцин, валин, лизин, метионин, фенилаланин, триптофан, треонин, гистидин и аргинин. Восемь из перечисленных аминокислот оказались незаменимыми для многих изученных видов высших животных. Что же касается гистидина и аргинина, то эти аминокислоты могут синтезироваться в организме, но в количестве, не обеспечивающем оптимального роста и развития. Иначе обстоит дело со всеми остальными незаменимыми аминокислотами, так как организм совершенно утратил в ходе эволюции способность синтезировать их углеродные цепи, т. е. незаменимым у незаменимых аминокислот является их углеродный скелет. Высшие растения и большинство микроорганизмов способны к активному синтезу этих аминокислот. Пути их биосинтеза у различных видов организмов идентичны или близки и гораздо сложнее, чем пути образования заменимых аминокислот. Во многих из этих реакций участвуют такие посредники, как тетрагидрофолиевая кислота (ТГФ), переносчик одноуглеродных фрагментов (—СН3, — Hj, —СНО, — HNH, —СН=) и 5-адено-зилметионин — главный донор метильных групп в реакциях трансметилирования. [c.402]


    На следующей стадии эволюции появились, видимо, организмы, родственные современным фотосинтезирующим бактериям (пурпурным и зеленым) они могли использовать энергию солнечного света. Любопытно, что большинство этих (грамотрицательных) фотосинтезирующих бактерий—строгие анаэробы. В отличие от высших растений ни один из указанных микроорганизмов не выделяет кислорода. Напротив, для. восстановления двуокиси углерода в процессе фотосинтеза им необхо ДИМ водород, который они получают либо путем расщепления неорганических соединений типа H2S, тиосульфата или Нг, либо из органичен ских веществ. [c.25]

    В ходе эволюции образовалось множество видов микроорганизмов. Многообразны также и биохимические процессы. Они специфичны для различных групп микроорганизмов, однако некоторые из этих процессов универсальны и встречаются не только у микроорганизмов, но и у растений и животных. [c.36]

    В 1974 г., когда стало ясно, что с помощью технологии рекомбинантных ДНК можно создавать организмы, несущие чужеродные гены, ученые, общественность и официальные лица забили тревогу по поводу безопасности этого нового подхода и возможных этических последствий его применения. Такие выражения, как заигрывание с Богом , манипулирование жизнью , самые опасные из проводившихся когда-либо научных исследований , творимая человеком эволюция без конца мелькали в прессе. Больше всего тревожило то, что случайно, а возможно, и намеренно, в военных целях, будут созданы уникальные, ранее не существовавшие в природе микроорганизмы, которые станут причиной эпидемий или экологических катастроф. В ответ на эти панические ожидания группа ведущих молекулярных биологов предложила наложить мораторий на некоторые эксперименты с рекомбинантными ДНК, особенно на те, в которых используются патогенные микроорганизмы. [c.518]

    Из приведенных данных следует, что представления об эволюции микроорганизмов (равно как и других существ) до сих пор остаются во многом не разрешенными Тем не менее, сегодня мы больше знаем, чем два — три десятилетия назад, о структурно-функциональной организации клеток различных организмов и заметно расширили арсенал промышленно полезных видов [c.89]

    Формирование патогенности у микроорганизмов процесс динамичный и является результатом в значительной степени случайных мутаций, закрепленных в процессе эволюции. [c.348]

    Наиболее широко распространенные в природе органические вещества и предопределяли направление эволюции биохимических процессов в микробном мире. Однако следует указать, что не все приспособительные реакции микроорганизмов, а особенно бактерий, наследственно закреплены и являются следствием эволюции. Многочисленные изменения биохимических свойств и даже некоторых физиологических особенностей являются обратимыми и, по-видимому, представляют собой модификации. Адаптивная изменчивость микрофлоры, так широко известная при очистке промышленных сточных вод, представляется явлением сложным, где безусловно приходится сталкиваться с проявлением различных категорий изменчивости микроорганизмов. Те формы адаптации, где приобретенное свойство закреплено наследственно, образуются в результате мутационной изменчивости и отбора мутантов средой. Часто встречаемая, легко обратимая изменчивость представляет собой модификации. [c.101]

    Чрезвычайное разнообразие полисахаридов, с одной стороны, и разрушающих их ферментов, е другой, вызвано, по-видимому, параллельным совершенствованием тех и других (зачастую с противоположными целями) в ходе эволюции живой природы. Одна из причин создания все новых и новых полисахаридов и все более усложняющейся структуры заключалась в защите организма от вторжения извне биологических факторов (в частности, микроорганизмов и их ферментов). Тем самым микроорганизмы вынуждены производить все более усложняющиеся наборы ферментов (полиферментных систем), способных обеспечить деструкцию полисахаридов, причем для надежного выполнения этой задачи природой были созданы ферменты, шунтирующие полиферментные системы, т. е. дублирующие работу сразу нескольких ферментов и иоэтому обладающие другими способами деструкции полимеров. [c.8]

    Многие болезни сельскохозяйственных культур можно предотвратить с помощью чисто агротехнических мероприятий, таких, как севооборот, правильный выбор посевных участков, уничтожение сорняков, на которых откладывают яйца вредные насекомые, и своевременное удаление зараженных частей растений. Теоретически самым лучшим способом защиты растений от болезней является выведение устойчивых к ним сортов. Однако на практике лишь немногим сортам удается сохранить эту устойчивость на длительное время, так как в результате эволюции или селекции среди патогенных микроорганизмов непрерывно появляются новые вирулентные штаммы. В том случае, когда агротехнические приемы не помогают сдержать распространение болезни, используют химические препараты. [c.486]

    Важнейшая практическая задача химической экологии заключается в отыскании оптимального режима для обмена веществ между человеком и природой. В основе жизни на земле лежит круговорот элементов. Для ее сохранения в будущем общественное производство должно быть включено в этот биотический круговорот природы. Обмен веществ между человеком и природой не сводится к проблеме загрязнений. Использование топливных и минеральных ресурсов, характер земледелия, производство и применение различных видов удобрений, регулирование численности популяций и поведения животных, подавление вредных и эксплуатация полезных микроорганизмов, применение природных лекарственных веществ и ядов — все это различные стороны совершающегося в масштабах планеты обмена веществ между природой и ее частью — человеческим обществом. До сих пор, как в силу социальных причин, так и из-за несовершенства научных знаний о структуре и функциональных связях природы, этот обмен имел — и все еще имеет — стихийный, неуправляемый характер. Сегодняшний уровень развития науки создает реальные предпосылки для сознательного управления эволюцией биосферы, в частности для оптимизации обмена веществ между человеком и природой. Но для того, чтобы эти предпосылки были реализованы, необходим отказ от анархического характера производства, от узкокорыстной психологии общества потребления . Необходимы также эффективное международное сотрудничество и международное законодательство об охране природы. Необходим комплексный, системный подход к решению экологических проблем, сочетающий естественнонаучный, экономический и социологический аспекты. [c.6]


    Лучше всего изучен среди цитохромов цитохром с. Это небольшой белок (мол. масса 12 500) с железопорфириновой группой, ковалентно присоединенной к единственной полипептидной цепи (разд. 8.4). Установлена аминокислотная последовательность белка (рис. 6-14) и выяснены все детали трехмерной структуры его молекул (рис. 8-5). Цитохром с, легко экстрагируемый из митохондрий, был получен в кристаллической форме из многих источников. Ранее мы уже упоминали (рис. 6-14), что цитохром с-один из белков, возникших на заре эволюции. На это указывает сходство многих участков его аминокислотной последовательности у всех эукариот микроорганизмов, растений и животных. [c.521]

    Извлекать металлы из окружающей среды способны все микроорганизмы, поскольку такие металлы, как железо, маг-еий, цинк, медь, молибден и многие другие входят в состав ферментов или пигментов, подобных цитохромам или хлорофиллам. В ряде случаев металлы накапливаются микроорганизмами в значительных количествах в бактериальной клетке могут содержаться ионы калия в концентрации 0,2 М, даже если в среде калий присутствует в концентрациях 0,0001 М и ниже. В ходе эволюции у микроорганизмов сформировались системы поглощения, специфичные к определенным металлам и, способные к значительному их концентрированию. В результате метаболических реакций, протекающих у микроорганизмов, могут происходит различные превращения металлов выделяе- [c.205]

    Микробиология в настоящее время по праву может считаться одной из основных дисциплин биологии, поскольку без знания особенностей микроорганизмов нельзя понять всего многообразия жизни на Земле, условий ее появления и эволюции. Огромное значение имело и продолжает иметь исследование микроорганизмов для развития таких наук, как биохимия, молекулярная биология, генетика, биофизика, экология и ряд других. [c.5]

    На протяжении не менее чем 80% всего периода органической эволюции Земля была населена исключительно микроорганизмами. Если ископаемые остатки микробов находят редко, то данные сравнительной физиологии и биохимии служат достаточной опорой для классификации прокариот по типу метаболизма. Однако при чтении раздела об эволюции организмов следует учитывать то, что в этой области еще много пробелов и домыслов. [c.501]

    Учебник охватывает современные проблемы микробиологии особенности конструктивного и энергетического метаболизма основных групп микроорганизмов, эволюцию энергетических процессов, строение и химический состав прокариотной клетки, пути химической и биологической эволюции, проблемы возникновеиия и дальнейшего развития жизни. Второе издание в целом сохраняет структуру первого издания, однако отдельные главы существенно переработаны, что продиктовано успехами, достигнутыми в изучении некоторых групп прокариот за последний период. [c.2]

    Сама нефть типа Б (опыт 4) с трудом поддается бактериальному окислению, так как структуры, легко окисляющиеся здесь, уже были использованы микроорганизмами ранее. Итак, из полученных экспериментальных данных следует, что процесс биодеградации вызывает глубокие изменения в составе насыщенных высококинящих углеводородов нефтей. Однако для наглядного показа стадийности биохимической эволюции нефтей по схеме А А -> Б -> необходимо знать орядок окисления углеводородов в процессе их биодеградации. (Кстати, термин биодеградация , на наш взгляд, не совсем верно отражает существо процесса. В данном случае происходит химическая или, вернее, биохимическая эволюция нефтей, свойства которых при этом изменяются, но не всегда в худшую сторону. Например, результатом этого процесса является образование беснарафинистых нефтей, на основе которых могут быть получены хорошие смазочные масла и пр.) [c.236]

    Из второго закона термодинамики известно, что в изолированной системе происходят самопроизвольные процессы, возрастание энтропии. Это нетрудно понять, если рассматривать биосферу Земли, как многокомпонентную систему, и каждый ее вид (организм), как состояние этой системы. Тогда, в соответствии со вторым началом термодинамики, число микросостояний увеличивается. Иными словами, существует энтропия поликомпонентности (ЭПК), которая является одной из причин эволюции костного и живого вещества и Ифает созидающую роль. Система самопроизвольно стремится увеличить свою разносортность (усилить свое многообразие). Не исключено, что в планетарной биосфере и отдельных биоценозах ЭПК колеблется около постоянного значения и уничтожение высокоорганизованных компонентов. Например, уничтожение млекопитающих увеличит возникновение и рост микроорганизмов и низших существ. Примером является возникновение инфекционных заболеваний даже в благополучных государствах. Система продолжает увеличивать свою разносортность, но это уже происходит за счет повышения многообразия микроорганизмов и простейших форм. Это может вытеснить человека с лица Земли. К сожалению, существующие технологии в земледелии, промышленности и строительстве направлены на уничтожение естественных биосистем и популяций. Идеи, что техника спасет мир — иллюзорны. То, что принимается нами за сферу разума - ноосфера, на деле является техносферой, которая безнравственна, и, в конечном счете, способствует уничтожению цивилизации ее же руками. Мы подобны ослепшему гетевскому Фаусту, который думает, что строит прекрасный город, а на самом деле слуги дьявола - лемуры, копают ему могилу. Поэтому, проблемой самого пристального внимания госу- [c.54]

    При исследовании биоповреждений металлоконструкций имеются определенные методологические трудности. Во-первых, био-повреждения материалов микроорганизмами носят специфический характер. В отличие от других видов повреждений в них непосредственно участвуют живые организмы, т. е. приходится иметь дело с биологическими объектами и процессами. Ркследования осложняются из-за видового многообразия микроорганизмов и взаимного влияния их друг на друга как положительного, так и отрицательного (симбиоз, комменсализм, конкуренция, антагонизм и т. п.), а также вследствие сложных процессов, протекающих внутри самого микроорганизма (метаболизм, анаболизм, катаболизм). Кроме того, нестабильность некоторых полимерных материалов и влияние их на микроорганизмы еще более усложняет проблему. Материалы конструкций техники и сооружений, а также условия эксплуатации последних, в особенности температурные факторы, влияют на развитие микроорганизмов и вызывают их эволюцию. Выявлено, что отдельные полимеры ЛКП и некоторые вещества (амины, кетоны, окислы азота и пр.), а также пониженная температура (-Ь4...-Ьб °С), искусственная аэрация и другие факторы определяют видовой состав (отбор) и адаптацию наиболее жизнеспособных микроорганизмов. В процессе отбора и адаптации повышается их агрессивность в отношении материалов, на которых они образуют колонии. [c.47]

    Состав А,-результат длительных эволюц. процессов в недрах Земли и на ее пов-сти, причем решающим фактором была деятельность зеленых растений, животных и микроорганизмов. [c.212]

    Осн. доля всех М. в природе обусловлена генными М. Они вызывают разнообразные изменения признаков. Большинство из М. вредны для организмов (могут вызывать уродство и даже гибель). Очень редко возникают М., улучшающие св-ва организма. Эти М. дают осн. материал для есгесгв. и искусств, отбора, являясь необходимьпл ус ювием эволюции в природе н селекции полезных форм растений, животных и микроорганизмов. Частота спонтанных мутаций у каждого вида генетически обусловлена и поддерживается на оптим, уровне. [c.155]

    Продуцентами этих кислот могут быть бактерии, плесневые грибы или дрожжи. Микроорганизмы, продуцирующие молочную кислоту, а также вызывающие спиртовое брожение, в ходе эволюции приспособились к анаэробному образу жизни. Уксусная и лимонная кислоты в свою очередь образуются в аэробных условиях. По-видимому, кислоты играют определенную роль в борьбе с конкурирующей микрофлорой, а также являются резервными источниками углерода. Так, Aspergillus niger после использования сахара могут использовать в качестве субстрата лимонную кислоту. В свою очередь уксуснокислые бактерии при отсутствии спирта в среде ассимилируют уксусную кислоту, окисляя ее до воды и СО2. [c.143]

    В XIX веке были созданы две великие эволюционные теории. Второе начало термодинамики (Клаузиус, Гиббс, Больцман) дает закон эволюции вещества в изолированной системе к его наиболее вероятному состоянию, характеризуемому максимальной неупорядоченностью, максимальной энтропией. Напротив, теория биологической эволюции (Дарвин) выражает возрастание упорядоченности и сложности живых систем, начиная с примитивных микроорганизмов и кончая Homo sapiens с его мыслящим мозгом. Между этими двумя теориями действительно имеется несоответствие — биологическая эволюция, филогенез, а также онтогенез никак не согласуются с равновесной термодинамикой изолированных систем. [c.12]

    Значимость этого фактора состоит не только в общеизвестных проблемах, связанных с загрязнением окружающей среды вредными веществами. Не меньщее значение имеет сам факт появления на нащей планете многочисленных искусственно созданных веществ, что может абсолютно непредсказуемым образом сказаться на эволюции биосферы. Частным примером, иллюстрирующим возможную роль этого нового антропогенного фактора естественного отбора, может служить хорошо известный феномен ускоренного формирования новых резистентных штаммов микроорганизмов, которое индуцируется появлением все новых и новых лекарственных средств. [c.52]

    Растворенные нефтепродукты в сточных водах могут быть обезврежены биохимическим путем, т. е. с помощью микроорганизмов-минерализаторов, которые используют органические вещества в процессе своей жизнедеятельности. Сообщества этих микроорганизмов сформировались в окружающей среде в процессе длительной эволюции и являются важнейшими элементами экологических систем. По физиологическим особе1гностям и условиям обитания они очень разнообразны, и по этой при-чиие с помощью биохимического метода можно удалять из сточных вод различные органические соедипения, включая весьма токсичные, а также неокисленные минеральные веш,ества. [c.208]

    Клеточная стенка возникла на каком-то определенном этапе эволюции микроорганизмов. Принимая движение эволюции микроорганизмов в направлении универсализации организации и дифференциации клеточных структур у фагов и вирусов бактерий дрожжей мицелиальных грибов, отметим, что фаги и вирусы не способны синтезировать клеточную стенку. Архебактерии (мета-нообразуюш ие бактерии, облигатные галофильные бактерии и термоацидофильные бактерии) лишены пептидогликана, типичного для бактерий. Лишь отдельные виды из них содержат ацетилсаха-ра и L-аминокислоты вместо диаминопимелиновой кислоты, у них нет D-аминокислот. [c.16]

    В очистке промышленных сточных вод принимает участие большинство микроорганизмов, способных к гетеротрофному биосинтезу, ибо только они могут разрушать органические вещества. Известно, что гетеротрофы в процессе эволюции приспособились к использованию в природе тех естественных органических веществ, с которыми они встречаются в нормальных экологических условиях. Это вещества растительного и животного происхождения разной сложности углеводы от гексоз и пентоз до целлюлозы, пентозанов, лигнина и хитина азотистые вещества от аминокислот до полипептидов и прочных фибриллярных белков — кератина и коллагена, нуклеиновые кислоты и нуклеопротеиды липиды и их компоненты от глицерина и жирных кислот до сложных растительных и животных масел, жиров и жироподобных веществ — фосфолипидов, липопротеи-дов и т. д. У значительно меньшего числа микроорганизмов существует приспособленность к потреблению углеводородов нефти, озокерита, битуминозных сланцев, сапропелитов и фенолов. Они в течение длительного периода времени, охватывающего жизнь многочисленных поколений микробов, в нормальных экологических условиях вступали в контакт с этими веществами, совершенно непригодными для всего органического мира ни в [c.100]

    Тиамин (витамин В]) является важным фактором роста для стафилококков, стрептококков, лептоспир. Тиамин прибавляют в среды для выращивания тех мик[)оор-ганизмов, которые не способны его синтезировать самостоятельно или только частично обладают этой способностью, например, молочнокислых (М. Стефенсон, 1951) или некоторых патогенных. Рибофлавин (витамин Вг) необходим для нормальной биохимической активности гемолитических стрептококков, бацилл столбняка, молочнокислых и иропноновокислых бактерий. Паитотено-вая кислота (витамин Вз) и ее производные являются факторами роста для патогенных и непатогенных микроорганизмов. В холине (витамин В4) большинство микроорганизмов не нуждается, так как в процессе эволюции приспособились к его синтезу. Для развития стафилококков, шигелл важно наличие никотинамида (витамин В5). [c.59]

    Иммунная система выработалась в процессе эволюции позвоночных как средство защиты от заражения микроорганизмами и более крупными паразитами. Однако большая часть сведений об иммунитете была получена в результате изучения реакции лабораторных животных на введение неинфекционных агентов, таких как чужеродные белки и полисахариды. Почти любая макромолекула, чуждая 01Я анизму реципиента, может вызвать иммунный ответ. Вещество, способное вызвать иммунный ответ, называют янтнгеном. Самое удивительное то, что иммунная система может различать антигены, весьма сходные между собой, например два белка, различающиеся только одной аминокислотой, или два оптических изомера. [c.6]

    Как в процессе эволюции могла выработаться столь сложная система Несомненно, это должно было происходить путем последовательных шагок При этом, видимо, многие из самых сложных компонентов, таких, как большой литический комплекс (компоненты S- 9X появились сравнительно поздно. Кажется вероятным, что система первоначально формировалась вокруг компонента СЗ н обеспечивала обризование ковалентного комплекса между СЗЬ и мембранами чужеродных клеток. Этот комплекс сам по себе значительно усиливает способность профессиональных фагоцитов поглощать н ризрушать микроорганизмы. Действительно, люди, у которых отсутствует один из поздннх компонентов и поэтому не может быть собран литический комплекс, защищены тем не менее от большинства типов бактерий. [c.50]

    Необходимо помнить, что согласно В. И, Вернадскому, человек, находящийся в ноосфере, своей деятельностью оказывает все большее влияние на атмосферу, гидросферу и литосферу. Эволюционируют микроорганизмы. Направление этой эволюции трудно предвидеть, и перспективы возможны неутешительные. Поэтому, учитывая связи перечисленных сфер (рис. 60.2), органического мира и слаборегулируемого рассеяния элементов, необходимо предусматривать все меры по предотвращению негативных экологических явлений [1]. [c.764]

    Первые следы жизни относятся к периоду более 3 млрд. лет назад это были микроорганизмы, которые преобладали в биосфере Земли до периода около 0,5 млрд. лет назад. Таким образом, прокариоты не только стоят у истоков земной жизни, из них не только развилось все многообразие эукариотических форм, но они и после этого существовали всегда. Высшие формы жизни на прртяжении своей эволюции никогда не были одиноки их постоянно либо теснили, либо поддерживали вездесущие одноклеточные организмы. Среди современных высших форм жизни есть и такие, которые утвердились не только в борьбе с себе подобными, но и во взаимоотношениях с микроорганизмами. У многих организмов в процессе эволюции выработались терпимые, партнерские отношения - мутуалистический симбиоз. Часть этой главы (разд, 17.2) будет специально посвящена микроорганизмам как симбионтам других микроорганизмов, растений и животных. [c.501]


Библиография для Микроорганизмы эволюция: [c.441]   
Смотреть страницы где упоминается термин Микроорганизмы эволюция: [c.299]    [c.29]    [c.83]    [c.52]    [c.250]    [c.511]    [c.2]    [c.17]    [c.75]    [c.157]    [c.347]    [c.107]    [c.199]    [c.215]   
Жизнь как она есть, ее зарождение и сущность (2002) -- [ c.113 ]




ПОИСК





Смотрите так же термины и статьи:

Роль микроорганизмов в эволюции биосферы

Сериновые протеазы микроорганизмов конвергентная эволюция



© 2025 chem21.info Реклама на сайте