Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химический синтез ДНК генов

    Химический синтез генов [c.216]

    Молекулярная биотехнология — это увлекательнейшая область научных исследований, с появлением которой произошел настоящий переворот во взаимоотношениях человека с живой природой. В ее основе лежит перенос единиц наследственности (генов) из одного организма в другой, осуш ествляемый методами генной инженерии (технология рекомбинантных ДНК). В большинстве случаев целью такого переноса является создание нового продукта или получение уже известного продукта в промышленных масштабах. В ч. I мы познакомим читателя с концепциями молекулярной биотехнологии и теми микроорганизмами, которые в ней используются, с основами молекулярной биологии и методологией рекомбинантных ДНК. Будут описаны такие методы, как химический синтез генов, полимеразная цепная реакция (ПЦР), определение нуклеотидной последовательности (секвенирование) ДНК. Помимо успешного клонирования нужного гена очень важно обеспечить его правильное функционирование в организме нового хозяина, поэтому мы остановимся также на способах оптимизации работы клонированных генов в про- и эукариотических системах. И наконец, мы рассмотрим, как можно улучшить свойства конечных продуктов, модифицируя клонированные гены путем введения в них специфических нуклеотидных замен (мутагенез in vitro). В целом материал, изложенный в первой части, служит фундаментом, который позволяет понять различные аспекты конкретных применений молекулярной биотехнологии. [c.13]


    Методы, развитые Кораиой, позволили решить проблему синтеза гена. Корана провел химический синтез последовательности дезоксинуклеотидов, комплементарной к известной последовательности рибонуклеотидов в Ала-тРНК Дрожжей [lit]. [c.587]

    Зонды для скрининга геномной библиотеки можно получить по крайней мере двумя способами. Во-первых, можно использовать клонированную ДНК близкородственного организма (гетерологичный зонд). В этом случае условия гибридизации нужно подбирать таким образом, чтобы она могла происходить при существенном расхождении между нуклеотидными последовательностями зонда и искомой ДНК это позволяет решить проблемы, связанные с заведомым различием между ДНК - источником зонда и исследуемой ДНК. Во-вторых, зонд можно получить методом химического синтеза, основываясь на известной аминокислотной последовательности белкового продукта искомого гена. [c.67]

    Другой метод состоит в прямом химическом синтезе гена, исходя из нуклеотидной последовательности ДНК, которая должна соответствовать выбранному белку. Из-за вырожденности кода может быть много разных последовательностей, и экспериментатор волен выбирать, какую из них предпочесть. К синтетическому гену пришивают регуляторные участки и встраивают в плазмиду. [c.63]

    Биохимические исследования давно привели к заключению, что синтезы таких специфических белков, как ферменты и т.д., контролируются шаблонами или матрицами, называемыми генами. Гены выполняют двойную функцию — воспроизведение собственной копии и обеспечение специфической структуры молекулы белка. Приведенные выше новые исследования, а также работы, направленные на изз ение размножения вирусов (см. Вирусы ), являются важным началом в познании химической природы генов. Большинство белков синтезируется в клеточной плазме в определенных полимеризационных центрах, называемых микросомами. Последние содержат только рибонуклеиновую кислоту и белки. Были открыты ферменты, связывающие аминокислоты с аденозинмонофосфорной кислотой с образованием смешанных ангидридов. Оказалось также, что эти ангидриды соединяются далее до входа в микросомы с рибонуклеиновой кислотой небольшого молекулярного веса, служащей, вероятно, переносчиком (М. Б. Хогланд 1956 г.). Таким образом, время выяснения механизма синтеза белков теперь кажется не очень далеким. [c.779]

    Использование обратной транскриптазы или химический синтез гена имеют преимущество над методом дробовика, поскольку получаемый при этом ген не является прерывистым . Прерывистые гены содержат один или несколько участ- [c.220]


    С разработкой быстрых и недорогих методов химического синтеза фрагментов ДНК методология молекулярно-биологических исследований ДНК существенно изменилась. Химически синтезированные олигонуклеотиды можно использовать для конструирования целых генов или их фрагментов, для амплификации специфических фрагментов ДНК, для направленных мутаций изолированных ДНК, а также в качестве зондов при гибридизации и в качестве линкеров, облегчающих клонирование. [c.47]

    Большое количество исследований было посвящено химическому синтезу гена, кодирующего ЛИЧ из 166 аминокислот. Соответственно, данный ген из 514 н. п. оказался самым крупным ге ном, синтезированным в 1982 г. группой английских ученых. В Рог сии в 1984 г. был осуществлен полный синтез гена а-И размере  [c.143]

    Какие две стратегии химического синтеза гена длиной 0,5 т. п. н. вы можете предложить Какую из них вы предпочтете  [c.104]

    Основой развития фармацевтической промышленности до недавнего времени был скрининг микроорганизмов и синтетических химических веществ. Появление новейших методов химического синтеза генов, возможно, позволит пойти другим путем конструирования случайных нуклеотидных последовательностей, их клонирования и оценки биологической активности соответствующих белков и пептидов. Хотя занятие это можно уподобить написанию сонета Шекспира группой печатающих [c.321]

    К числу наиболее важных для молекулярной биотехнологии методов, помимо клонирования генов, относятся методы химического синтеза ДНК, секвенирование ДНК и полимеразная цепная реакция (ПЦР). [c.102]

    В последние годы достигнут значительный прогресс в автоматизации и ускорении синтеза олигонуклеотидов, тем не менее химический синтез гена — большой трудоемкий процесс. Другое ограничение этого метода связано с необходимостью точно знать первичную структуру белка, что не всегда доступно. [c.98]

    Необходимость в химическом синтезе нуклеотидной последовательности, кодирующей какой-то конкретный белок, может возникнуть тогда, когда клонирование соответствующего гена затруднено. При этом нуклеотидную последовательность гена находят из данных об аминокислотной последовательности белка. К химическому синтезу прибегают и тогда, когда кодоны, из которых состоит данный ген, плохо считываются организмом-хозяином, и уровень трансляции оказывается очень низким. В таком случае можно синтезировать ген с таким набором кодонов (оптимизация кодонов), при котором аминокислотная последовательность кодируемого белка остается прежней, а кодоны считываются хозяйским организмом более эффективно. [c.86]

    Около 1972 г. было установлено химическое строение генов, управляющих синтезом белка одного из вирусов. При этом путем химического синтеза было подтверждено представление [c.14]

    Происходит ли развитие высших организмов в результате накопления многочисленных подобных точечных мутаций в течение веков или предпочтительным путем является массовая замена больших сегментов ДНК, это остается вопросом для будущего выяснения. Сейчас ясно, что мощное сочетание знаний о структуре и функции с химическим синтезом позволяет размышлять над проблемами генной инженерии. [c.213]

    Если химически синтезированную двухцепочечную ДНК предполагается использовать в качестве гена или его фрагмента, то каждую из ее цепей синтезируют отдельно. Получить короткие гены (60-80 п. н.) технически несложно для этого синтезируют комплементарные цепи и затем отжигают их. В случае крупных генов (>300 п. н.) приходится применять специальные стратегии, поскольку эффективность каждого цикла химического синтеза никогда не достигает 100%. Например, если ген состоит из 999 пар нуклеотидов, а эффективность каждого цикла равна 99%, то доля полноразмерных одноцепочечных ДНК по окончании процесса составит не более 0,004%. Чтобы решить эту проблему, синтетические (двухцепочечные) гены собирают из модулей — (одноцепочечных) фрагментов длиной от 20 до 100 нуклеотидов. [c.86]

    Химический и ферментативный синтез генов. Химический синтез гена впервые осуществил в 1970 г. Гобинд Хорана (США). В лаборатории этого ученого удалось химическим путем связать 77 дезоксирибонуклеотидов в цепочку ДНК, комплементарную к аланиновой транспортной РНК (г-РНК) пекарских дрожжей. Отрезки цепочки соединялись встык с помощью фермента лигазы. Две синтезированные нити соединялись химическими связями в спирализованную двутяжевую структуру. Такой искусственно созданный биополимер и стал геном аланиновой г-РНК, содержащейся в геноме дрожжей. Этот эксперимент — выдающееся достижение биоорганической химии. [c.166]

    Инсулин играет основную роль в лечении диабета — болезни, по распространенности занимающей третье место после сердечно-сосудистых заболеваний и рака. Получение этого гормона генно-инженерным способом представлялось весьма перспективным и было выполнено в начале 80-х гг. XX столетия. В качестве компетентной клетки использовали Е. соИ, гены обеих цепей молекулы человеческого инсулина были получены методом химического синтеза. Эти гены присоединяли к З -концу гена, кодирующего белок р-галакто-зидазу, и вводили в векторную плазмиду Трансформированные клетки Е. соИ [c.501]

    Есть ли необходимость в создании новых генов Оказывается, да. Мутации происходят часто, но сохраняются очень немногие, и далеко не все они благоприятны. А управляемый мутагенез позволяет обойти эти трудности как по существу мутации, так и по времени ее появления. Еще одним важным достижением биоорганической химии и генной инженерии является химический синтез олигонуклеотидов, практически генов. Первый ген из 150 нуклеотидных пар синтезировал в 1967 г. X. Г. Корана и его сотрудники. Это был гея одной из тРНК. Х.Г. Корана первым осуществил так называемый блочный синтез, когда одна половина блока [c.61]


    Первый химический синтез гена, осзтцествленный примерно 20 лет назад, потребовал многих человеко-лет работы. С той поры в этой области достигнуты замечательные успехи, и сейчас синтез гена того же размера один исследователь может выполнить всего за две недели. В промышленных лабораториях осушествлено несколько синтезов генов инсулина, а в Англии был проведен замечательный синтез гена интерферона. Оба этих белка перспективны при использовании в медидине. Их выгодно производить и с коммерческой точки зрения. Недавно выполнен синтез гена для фермента рибонуклеазы, позволяющий проводить в дальнейшем изменения в гене и тем самым открывающий возможность изменять физические и химические свойства белка желаемым образом. [c.172]

    Огромное значение для молекулярной биологии последнего десятилетия имеет развитие генетической инженерии (возникшей в 1972—1973 гг. П. Берг, П. Лобан, С. Коэн и Г. Бойер) и методов работы с рекомбинантными ДНК в сочетании с методами химического синтеза крупных фрагментов ДНК. В результате сделались доступными для исследования индивидуальные гены и регуляторные генетические элементы, было стимулировано изучение ферментов биосинтеза и обмена нуклеиновых кислот. Благодаря этому после 1977 г. были обнаружены мозаичное (экзон-интронное) строение генов, явление сплайсинга и ферментативной активности у РНК, усилители ( энхансеры ) экспрессии генов, многие регуляторные белки, онкогены и онкобелки, мобильные генетические элементы. Возникла белковая инженерия, которая позволяет получать новые, не существующие в природе белки. Молекулярная биология начала оказывать существенное влияние на развитие биотехнологии, медицины и сельского хозяйства. [c.9]

    Однако с его помощью получить молекулы аланиновой г-РНК не удалось. Оказалось, что транспортные РНК синтезируются иа гене не в том виде, как они потом существуют в клетках, а в форме более длинной цепочки. Химический синтез гена технически очень труден и требует знания его нуклеотидной структуры. Возможности искусственного синтеза генов неизмеримо возросли в связи с открытием фермента обратной траискриптазы. При наличии матричной (информационной) РНК, соответствующей опре- [c.166]

    Большие успехи в синтезе олиго- и полидезоксирибонуклеотидов в сочетании со знанием генетического кода позволяют химически синтензировать гены для произвольного белка с известной первичной структурой. Эти гены могут быть использованы для синтеза этого белка бактериями или клеточными культурами после введения его в клетки методами генетической инженерии (см. 7.11). [c.174]

    С начала 70-х гг., когда было показано, что ДНК можно расщепить на фрагменты и затем снова соединить in vitro, рекомбинантные ДНК стали важным инструментом молекулярной биологии [И]. В настоящее время методы генной инженерии позволяют изолировать, размножить и прочитать (определить нуклеотидную последовательность) любой нужный ген, принадлежит ли он растению, животному или микроорганизму. Зная нуклеотидную последовательность ДНК представляющего интерес гена, мы можем затем установить аминокислотную последовательность кодируемого им белка. Верно и обратное-для любой требуемой полипептидной цепи можно создать соо1ветствующую нуклеотидную последовательность. Для относительно небольших пептидов в 1981 г. осуществлен химический синтез гена in vitro [14]. Таким образом, не существует теоретических препятствий к конструированию генов, кодирующих новые функции. Трудности возникают, если нужно синтезировать длинные полинуклеотиды-с приемлемым выходом, не загрязненные побочными продуктами сходного строения, а также при проектировании полипептидной последовательности, обеспечивающей желаемые функции. Мы еще очень мало знаем о факторах, определяющих упаковку белка. Поэтому сейчас мы ограничиваемся модификацией существующих белков путем замены нуклеотидов в соответствующих областях гена. [c.102]

    Следующим щагом в развитии методов химического синтеза генов стало создание специализированных компьютерных программ, которые позволят оптимизировать структуру олигонуклеотидов, чтобы свести к минимуму образование комплексов, приводящих к появлению побочных продуктов. Одним из первых примеров использования такой программы для выявления самокомплементарных и повторяющихся последовательностей оснований служит работа по синтезу гена эпидермального фактора роста, предназначенного для экспрессии в клетках Е. oll. Целевой ген, кодирующий 53 аминокислоты, был разбит на 23 олигонуклеотида. На рис. 1.42 приведен фрагмент составленной с помощью ЭВМ схемы последовательной сборки целевой ДНК из 17 промежуточных блоков-интермедиатов, каждый из которых был выделен в индивидуальном состоянии. Несмотря на оче- [c.63]

    Егце одной причиной, по которой экспериментаторы бывают вынуждены обрагцаться к химическому синтезу генов - это когда им (в частности, из данных литературы) известна некая нуклеотидная последовательность или только последовательность аминокислот интересуюгцего их белка, но отсутствует исходный биологический материал (в виде самого организма, его тканей, гербарного материала, семян и пр.), который в силу ряда причин им негде взять и соответственно не из чего чего клонировать. [c.59]

    Наши современные представления о механизмах действия и регуляции генов, а также возможности частичного переноса ДНК от одной бактерии к другой позволяют предпринимать попытки к исправлению генетических дефектов за счет введения людям новых генов. На первый взгляд такая идея может показаться явно фантастичной, однако уже сейчас нам известны вирусы типа SV40, способные включаться в геном животных. Хотя вирус SV40 по своей природе онкогенен, тем не менее можно надеяться получить 8У40-подобные частицы ДНК с нормальными генами, извлеченными (возможно, с помощью других вирусов) из культивируемых клеток. Другая возможность решения этой проблемы состоит в извлечении генов из бактерий или же в введении генов, полученных химическим синтезом, в трансдуцирующие вирусы. [c.294]

    Чтобы обеспечить адекватность диагностического теста, гибридизационные ДНК- и РНК-зонды должны быть высокоспецифичными. Другими словами, необходимо, чтобы зонд гиб-ридизовался только с искомой нуклеотидной последовательностью. Если есть вероятность получения ложноположительного (наличие гибридизационного сигнала в отсутствие последова-тельности-мишени) или ложноотрицательного (отсутствие сигнала при наличии последователь-ности-мишени) результата, то целесообразность применения теста значительно снижается. Специфичность зондов может проявляться на разных уровнях они могут различать два и более вида, отдельные штаммы в пределах одного вида или разные гены. В зависимости от ситуации зонды могут быть представлены молекулами ДНК или РНК они могут быть длинными (более 100 нуклеотидов) или короткими (менее 50 нуклеотидов), представлять собой продукт химического синтеза, клонированные интактные гены или их фрагменты. [c.188]

    С разработкой в начале 80-х гг. быстрых, эффективных и недорогих методов химического синтеза олигонуклеотидов появилась возможность использовать радиоактивно меченные олигонуклеотидные зонды для выявления различий между нуклеотидными последовательностями, в частности для обнаружения мутаций у человека. К тому времени было изолировано относительно небольшое число генов, главным образом в виде комплементарных ДНК (кДНК), поэтому подбор зонда, гомологичного конкретному гену, представлял собой непростую задачу. Но даже если соответствующие кДНК были получены, невозможно было различить нормальный и мутантный гены чело- [c.189]

    Получение генов. Их возможно получать методом химического синтеза, выделением из геномов живых организмов, а также при помоши обратной транскриптазы, которая на соответствующей мРНК кодирует комплементарную ДНК (кДНК). Первый и второй методы имеют ограниченное применение. Химический синтез — достаточно длительная и дорогостоящая процедура. Вьщеление однородных фрагментов ДНК осуществляется при помощи ферментов-рестриктаз, которые узнают и расщепляют ДНК в строго фиксированных точках. Эти ферменты функционально связаны с модифицирующими метилазами следующим образом метилазы осуществляют метилирование в сайтах ДНК, которые атакуются рестриктазами. Метилирование защищает собственную ДНК клетки от неспецифической фрагментации, в то время как чужеродная ДНК немедленно разрушается. В месте разрыва полинуклеотидных цепей образуются, в частности, липкие концы, способные образовывать между собой комплементарные пары оснований. Открытие В. Арбером рестрикции и использование ее для получения генов было отмечено Нобелевской премией. В настоящее время идентифицировано более 500 рестриктаз, причем их название складывается из первой буквы рода микроорганизма и двух пер- [c.499]

    Комплекс современных методов синтеза нуклеиновых кислот позволяет исходя нз мононуклеотидов получать гены, кодирующие белки длиной более 100 аминокислотных остатков. Первым этапом работы является химический синтез олнгодезоксирнбонуклеотидов, которые затем с помощью ферментов нуклеинового обмена, таких, как Т4 полннуклеотидкнназа, Т4 ДНК-лигаза и ДНК-полимеразы, превращаются в двухцепочечные фрагменты ДНК (рнс, 207). Мето- [c.370]


Смотреть страницы где упоминается термин Химический синтез ДНК генов: [c.108]    [c.496]    [c.232]    [c.270]    [c.322]    [c.46]    [c.59]    [c.262]    [c.16]    [c.204]    [c.244]    [c.265]    [c.12]    [c.209]    [c.199]   
Генетическая инженерия (2004) -- [ c.75 , c.76 ]




ПОИСК





Смотрите так же термины и статьи:

Химический синтез ДНК компьютерное планирования синтеза искусственных генов



© 2025 chem21.info Реклама на сайте