Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Петля гистерезиса

Рис. 47. Петля гистерезиса при поджигании и тушении Рис. 47. Петля гистерезиса при поджигании и тушении

Рисунок 1.3.13- Прямоугольная петля гистерезиса Рисунок 1.3.13- Прямоугольная петля гистерезиса
    Постройте петлю гистерезиса и интегральную кривую рг определения объема пор адсорбента по размерам, используя экспериментальные данные капиллярной конденсации метанола на силикагеле при 293 К (варианты I—II)  [c.70]

    Нормы проектирования требуют, чтобы напряжения не превышали предельного напряжения сдвига в том диапазоне, где конструкционные материалы должны подчиняться закону линейной упругости. Реальные материалы, однако, только приближенно можно считать упругими, так что при нагрузке и разгрузке даже ннже предельного напряжения сдвига обнаруживается узкая петля гистерезиса. Отклонение от свойств чисто упругих материалов возрастает вместе с увеличением напряжений. Обычно к такому отклонению приводят длительные нагрузки и повышение температуры. Во многих случаях для расчетных целей применяются методы теории линейной упругости. В этом параграфе в силу их важности рассматриваются некоторые частные вопросы зависимости деформации от напряжения. Например, демпфирующая способность трубы теплообменника может возрасти на порядок, если труба находится под высоким давлением. Точно так же упругие постоянные и демпфирующая способность существенно меняются, если температура в процессе эксплуатации возрастает, это приводит к различию экспериментальных результатов, полученных при холодной прогонке и низких давлениях по сравнению с реальными условиями эксплуатации. [c.196]

    В действительности замедленное, но непрерывное снижение О наблюдается в течение всего срока службы мембраны, который и определяется именно этим показателем, но не механической прочностью мембраны. Анализ полученных данных [153] показал, что в качестве критерия, характеризующего вязкоэластичные свойства мембраны, а следовательно, и срок ее службы, можно принять площадь петли гистерезиса (рис. 1У-5, а, б), описываемой кривой С = 1(Р) при последовательном увеличении Р от нуля до некоторого значения, а затем изменение давления в обратной последовательности. [c.177]

    На рис. 1У-5, в, г показана петля гистерезиса для мембраны с более жесткой структурой, о чем свидетельствует меньшая площадь петли. Для такой мембраны характерна более высокая устойчивость в работе. У мембран с большей площадью петли гистерезиса при непрерывной работе проницаемость снижается значительно быстрее и момент, когда [c.177]

Рис.1.3. Петля гистерезиса для тиксотропной жидкости Рис.1.3. Петля гистерезиса для тиксотропной жидкости

    Такие свойства, как намагниченность насыщения М , точка Кюри в , магнитострикция парапроцесса - сгруюурно нечувствительны, коэрцитивная сила Яс, магнитная проницаемость fl, магнитная восприимчивость остаточная намагниченность Мг — структурно чувствительны. Первая грутта свойств связана с наличием или температурным изменением магнитного порядка, вторая - с намагничиванием, т. е. с изменением доменной структуры. Современная теория ферромагнетизма в основном делится на два раздела - теорию спонтанного магнетизма (магнитного упорядочения) и теорию технического намагничивания (кривая намагничивания, петля гистерезиса). Как структурно чувствительные, так и структурно нечувствительные свойства зависят от фазового состозгаия твердого тела (состав и относительное содержанне фаз, их атомное упорядочение). [c.55]

    Петля гистерезиса С = /(Р) для ацетатцеллюлозных мембран а — нормальное положение мембраны № 1 (с менее жесткой структурой) — активным слоем к раствору 6 — противоположное положение мембраны № 1 в — нормальное положение мембраны № 2 (с более жесткой структурой) г — противоположное положение мембраны № 2. [c.178]

    Величина накопленной односторонней деформации определяется на основе кривой циклического деформирования [1] и представляет собой разность между шириной петли гистерезиса в полуциклах растяжений и сжатия [c.328]

    Конструктивно оперативная память выполнена па магнитных кольцах диаметром 0,8 мм с прямоугольной петлей гистерезиса в виде блоков емкостью 64 Кбайт каждый. Использование магнитных колец в качестве запоминающего устройства основано на их способности находиться в двух устойчивых состояниях намагниченности и сохранять эти состояния неограниченно долго. Одно из состояний (например, положительная намагниченность) принимается как хранение единицы, а второе (отрицательная намагниченность) — хранение нуля. Очевидно, для хранения одного байта информации необходимо иметь девять таких колец (восемь информационных и один контрольный бит), объединенных общими проводами записи — считывания. Запись и считывание информации производятся под действием тока, пропускаемого по соответствующим проводам. При этом считывание производится обязательно с регенерацией. [c.182]

    Как видно из рис. 13, деформационные кривые для песка, как и для сплошных твердых тел, показывают увеличение деформации при постоянной нагрузке (участок аЬ) и наличие петли гистерезиса т). [c.34]

    При намагничивании магнитного материала переменным полем петля гистерезиса, характеризующая затраты энергии в течение одного цикла перемагничивания, расширяются (увеличивают свою площадь) как за счет потерь на гистерезис, так и потерь на вихревые токи и дополнительные потери. Такую петлю называют динамической, а сумму составляющих потерь - полными потерями. Геометрическое место вершин динамических петель гистерезиса называют динамической кривой намагничивания, а отношение индукции к напряженности поля на этой кривой - динамической магнитной проницаемостью [c.32]

    На рис. 16-3 изображена петля гистерезиса для сушки и увлажнения древесины при 10° С. [c.406]

    Перемагничивание тороидального сердечника с ППГ по предельной петле гистерезиса осуществляется импульсами тока, амплитуда, форма и длительность импульса напряжения, наводимого при этом в измерительной обмотке преобразователя, определяются выражением [c.139]

    Модели нулевой размерности или модели псевдопористого пространства. Основное назначение элементов данной модели состоит в качественном описании процессов в единичных порах, а также в тех случаях, когда капиллярная структура, функционирующая как модель, не может быть усложнена каким-либо простым способом для получения протяженного пористого пространства. Сами элементы обычно используются в качестве концеп-ционной формальной модели переноса какого-либо явления. Модель конического капилляра используется для описания капиллярного переноса жидкости к высыхающей поверхности. Модели скрещенных и параллельных с перемычкой капилляров применяются для объяснения кинематического и статического гистерезиса при капиллярном переносе жидкости или захвате замещаемой фазы. Модель порового дуплета или разъезда применяется для выявления гистерезиса при всасывании и.ли впитывании. Модель независимого домена используется для объяснения петли гистерезиса в процессах адсорбции. Используются также и другие модели, описывающие специфические явления в пористых средах с разделенными фазами [23, 31]. [c.131]

    Создание предварительного натяга позволяет выбрать зазоры в стыках, обеспечить большую определенность базирования деталей и тем самым увеличить жесткость технологической системы (рис. 1.72), при этом уменьшается петля гистерезиса. [c.117]

    Сложный характер одновременного влияния (часто в противоположных направлениях) различных факторов на магнитные свойства материалов затрудняет их разграничение и определение влияния каждого. В некоторых простых случаях имеется возможность определить влияние одного или нескольких основных факторов на размеры и форму петли гистерезиса. В случае, если этот фактор одновременно и однозначно влияет на другие физические (немагнитные) свойства материала, можно установить [c.165]

    Преобразователи с сердечником с прямоугольной петлей гистерезиса. При разработке электромагнитных средств неразрушающего контроля часто возникает необходимость миниатюризации преобразователя с сохранением его высокой чувствительности. Одним из способов решения этой задачи является использование гистерезисных свойств сердечника из материала с прямоугольной петлей гистерезиса (ППГ) [51]. [c.138]


    Перспективными для использования в многоэлементных преобразователях являются преобразователи магнитных полей на основе кольцевых сердечников из материала с прямоугольной петлей гистерезиса. Достоинством таких преобразователей является наличие у них вентильных свойств, что делает ненужным применение электронных коммутирующих ключей в каждой ячейке матрицы. При этом отсутствует гальваническая связь между отдельными чувствительными элементами, сушественно упрощается конструкция много- [c.144]

    Для построения ривых распределения пор практически поступают так. Одним из описанных методов адсорбции снимают для исследуемого образца изотерму с петлей гистерезиса, из которой для соответствующих значений Р/Рв находят величины адсорбции (объемы заполненных пор). Затем расчетом для этих же значений Р/Ра определяют соответствующие величины эффективных радиусов. Получив серию значений Уа и Га, строят искомую 33-висимость = (гэ), показанную на рис, 36, б. По ней находят производную с1Уо.1йг (рис, 36, [c.98]

Рис. 7.2. Петля гистерезиса в системе с 5-образной зависимостью актпвностп катализатора от концентрации продукта Р Рис. 7.2. Петля гистерезиса в системе с 5-<a href="/info/13806">образной</a> зависимостью актпвностп <a href="/info/496">катализатора</a> от концентрации продукта Р
    У диамагнетиков (водород, инертные газы и др.) ц < 1. Для парамагнетиков (кислород, оксид азота, соли редкоземельных металлов, соли железа, кобальта и никеля и др.) ц > 1. Ферромагнетики (Ре, N1, Со и их сплавы, сплавы хрома и марганца, Сс1) имеют магнитную проницаемость ц 1. Магнитная проницаемость ферромагнетиков нелинейно зависит от напряженности внешнего поля. Кривая намагничивания В (я) ферромагнетиков имеет вид характерной петли гистерезиса, по ширийе которой различают материалы магнитомягкие (электротехнические стали) и магнитожесткие (постоянные магниты). При определенных значениях напряженности поля индукция достигает насыщения. [c.38]

    Если 0с — угол смачивания между твердым веществом и жидкостью, то составляющая поверхностного натяжения равна a os0o и уравнение (VI.25) изменится. Давление равновесной адсорбция Яа в области капиллярной конденсации превышает соответствующее давление десорбции Яд, так как десорбция в этом случае происходит из целиком заполненных капилляров, и угол смачивания равен нулю. В опыте необходимо провести адсорбци10 до относительного давления, равного единице, и десорбцию, а затем использовать для расчета десорбционную ветвь петли гистерезиса данной изотермы, т. к при этом не нужна поправка на угол смачивания. На рис. 131 изображены изотермы адсорбции и десорбции паров бензола на крупнопористом силикагеле. Каждая точка изотермы адсорбции дает значения адсорбированного количества бензола а и относительного давления пара Р/Рд. Умножая величину а на V, находят объем пор, а подставляя в уравнение Кельвина (VI. 25) соответствующее значение Я/Яо, получают гк. [c.301]

    Релаксации полимера сопутствует гистерезис — явление, при котором кривая деформации при приложении нагрузки к полимеру не совпадает с кривой деформации при ее снятии. В результате на графике нагрузка-деформация образуется так называемая петля гистерези- 7.3. Петля гистерезиса са (рис. 17.3). Явление гистерези- [c.377]

    В. Л. Вальдман > макс/ гмин, вычисляемое графически из петли гистерезиса для какой-либо определенной температуры, то окажется, что и эта величина для масел, загуш енных полимерами, ниже, чем для чисто минеральных масел. Для первых эта величина составляет всего 1,5 —2,5, для вторых достигает 5,0—8,0. [c.139]

    Исследования показали, что в результате наличия зазоров в стыках, сложного неравномерного характера нагружения, особенностей конструкции, наличия геометрических погрешностей деталей жесткость технологической системы изменяется от одного цикла нагружения к другому. Это различие можно графически изобразить в виде петли гистерезиса. При одном и том же характере нагружения эта разница уже при третьем цикле нагружения сводится к мшшмуму. [c.52]

    При циклическом перемагничивании кривая намагничивания образует петлю гистерезиса. Основными характеристиками петли гистерезиса являются остаточная индукция Вг, коэрцитивная сила Не и площадь петли, характеризующая потери на гистерезис за один цикл перемагничи-вания. [c.31]

    Выбором начальных значений параметров короткозамкнутой обмотки реализуется эффект электронной лупьп) - достигается работа преобразователя на крутом линейном участке восходящей ветви петли гистерезиса. Экспериментальные исследования и расчеты показьшают высокую [c.139]

    Важной задачей, которую необходимо рещить при разработке малогабаритных преобразователей, является снижение величины тока возбуждения без снижения чувствительности. Ддя достижения этой цели короткозамкнутая обмотка преобразователя может быть выполнена из двух секций с неравным числом витков, расположешшх на сердечнике диаметрально-противоположно и соединенных встречно [63]. Конструкция преобразователя представлена на рисунке 3.3.13, е. Ток, протекаюиош по короткозамкнутой обмотке, определяется разностью ЭДС, наводимых в секциях при перемагничивании сердечника. Магнитный поток секции с большим числом витков направлен навстречу магнитному потоку в сердечнике, а магнитный поток, создаваемый секцией с меньшим числом витков, совпадает с потоком в сердечнике. Поля рассеивания обоих секций формируют импульсное магнитное поле, которое возбуждает импульсные вихревые потоки в электропроводящем объекте контроля. Встречное включение секций КЗО позволяет увеличить интенсивность поля рассеяния без увеличения магнитного сопротивления сердечника. Основная энергия магнитного потока рассеивания сосредоточена в зазоре между секциями, поэтому при анализе взаимодействия преобразователя с объектом контроля зазор может рассматриваться как прямоугольная катушка с высотой, равной высоте секции. Такая конструкция преобразователя позволяет перемагничивать сердечник по предельной петле гистерезиса при гораздо меньших значениях тока, чем у преобразователя с немагнитным зазором или короткозамкнутым витком, и соответственно при меньшем числе витков обмотки возбуждения, что позволяет [c.141]

    Как известно, тороидальные ферритовые сердечники чувствительны к внешним магнитным гюлям и могут бьпъ использованы в качестве преобразователей магнитных полей [79]. Введение местного магнитного сопротивления в виде немагнитного зазора или короткозамкнутой обмотки создает поле рассеяния, взаимодействующее с внешним магнитным полем. При этом искажается форма петли гистерезиса - она наклоняется в сторону оси абсписс. Эго приводит к снижению граничной напряженности Игр сердечника и увеличению линейного участка зависимости В = /(Н), что существенно увеличиваег чувствительность к малым внешним магнитным полям и расширяет динамический диапазон преобразователя на феррито-вом сердечнике. [c.142]

    Преобразователи первой фуппы имеют существенные преимущества, определяемые прежде всего тем, что в них используется единая измерительная цепь. Реализация таких преобразователей стала возможной только с появлением электромагнитных преобразователей, обладающих вентильными свойствав ш,- преобразователей с сердечником из материала с прямоугольной петлей гистерезиса, а также преобразоваггелей с неравномерной плотностью обмотки, позволяющих формировать поля Пч)бразной импульсной формы по заданным пространственным координатам и за счет этого повысить локальность контроля и отстроиться от влияния соседних преобразователей. [c.152]


Смотреть страницы где упоминается термин Петля гистерезиса: [c.97]    [c.97]    [c.175]    [c.180]    [c.132]    [c.244]    [c.244]    [c.30]    [c.118]    [c.145]    [c.152]    [c.165]    [c.192]    [c.12]    [c.111]    [c.266]   
Смотреть главы в:

Адсорбция, удельная поверхность, пористость -> Петля гистерезиса


Технология резины (1967) -- [ c.97 ]

Энциклопедия полимеров том 1 (1972) -- [ c.0 ]

Энциклопедия полимеров Том 1 (1974) -- [ c.0 ]

Технология резины (1964) -- [ c.97 ]

Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.376 , c.410 , c.411 ]

Автоматизация холодильных машин и установок (1973) -- [ c.17 , c.73 , c.98 ]

Структура и механические свойства полимеров Изд 2 (1972) -- [ c.83 , c.97 ]




ПОИСК





Смотрите так же термины и статьи:

Величина поверхности расчет на основе петель гистерезиса

Гистерезис

Гистерезис пересечение петли

Гистерезис площадь петли

Капиллярное пространство между параллельными пластинами или открытые щелеобразные капилляры. Петля гистерезиса типа

Капилляры и типы петель гистерезиса

Магнитные характеристики сталей, петли магнитного гистерезиса

Петли гистерезиса для титаната бария при напряженности поля всм фиг

Петля гистерезиса Пирамида

Петля гистерезиса для магнитного материала

Петля гистерезиса при сверхупругости

Петля гистерезиса при циклических деформация

Петля динамического гистерезис

Трубчатые бутылкообразные поры различного радиуса (петля гистерезиса типа Е)

Ферриты с прямоугольной петлей гистерезиса ППГ

Характеристика нелинейная с петлей гистерезиса

Цилиндрические поры с открытыми концами. Петля гистерезиса типа



© 2025 chem21.info Реклама на сайте