Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны свойства

    Анионы раствора не влияют на величину разности электрических потенциалов, так как оии не проникают внутрь стекла. Необходимо отметить еще одну особенность стеклянного электрода. Если по обе стороны тонкой стеклянной мембраны (или пленки) находятся растворы с одинаковой концентрацией то в цепи IV мембранный потенциал должен быть равен нулю. Однако в этом случае всегда наблюдается скачок потенциала, который называется потенциалом асимметрии. Это означает, что на внутренней и внешней поверхностях стеклянного электрода возникают различные по величине потенциалы, что объясняется различием свойств внутренней и внешней поверхностей, возникающим, вероятно, при изготовлении электрода. Поэтому при измерении pH растворов стеклянным электродом необходимо учитывать потенциал асимметрии или определять pH по калибровочной кривой. Для уменьшения потенциала асимметрии стеклянные электроды длительное время выдерживают в воде или в растворе 0,1 и. H I. [c.578]


    Транспорт компонента разделяемой газовой смеси через пористую основу мембраны осуществляется одновременно несколькими механизмами переноса, в зависимости от структуры матрицы, свойств веществ и термодинамических параметров процесса. В общем случае движение компонентов смеси может вызываться конвективно-фильтрационным переносом, различного вида скольжениями вдоль поверхности пор, объемной диффузией, баро- и термодиффузией, кнудсеновской диффузией (эффузией), поверхностной диффузией, пленочным течением вследствии градиента расклинивающего давления, капиллярным переносом конденсированной фазы в анизотропных структурах. Вещество в порах скелета мембраны, как показано ранее, может находиться в виде объемной газовой фазы, капиллярной жидкости и адсорбированной пленки. Для каждого из этих состояний возможно несколько механизмов переноса, взаимосвязанных между собой. Не все виды переноса равнозначны по своему вкладу в результирующий поток веществу, поэтому при вычислении коэффициента проницаемости необходимо определить условия, при которых те или иные формы движения вещества являются доминирующими [З, 9, 10, 14—16]. [c.54]

    В освоенных промышленностью обратноосмотических системах применяются только анизотропные ацетатцеллюлозные мембраны и полые волокна. При выполнении программы исследований по обессоливанию соленых вод было разработано небольшое число перспективных материалов для мембран. Среди таких мембран можно назвать мембраны, формируемые в динамическом режиме, мембраны иа графитизированных окислов, пористые стеклянные мембраны. Свойства мембран и описания технологии их изготовления приведены в работах /83-90/. [c.169]

    НИЮ с толщиной двойного электрического слоя на стенках капилляров. При анализе процессов, протекающих в системе, используются законы, определяющие локальные свойства уравнения интегрируются по всему внутреннему объему пор. Как будет показано далее, при этом матрицы феноменологических коэффициентов оказываются симметричными как для средних локальных потоков, так и для брутто-потоков и сил (с чем мы встречались уже в разделе П). Зависимость коэффициентов, относящихся к мембране в целом, от концентрации может привести к возникновению у мембраны свойств осциллятора и к другим явлениям родственного характера. [c.494]


    На первых этапах исследований в области проницаемости авторы исходили из так называемой мембранной теории, которая постулировала, что поступление веществ в клетку зависит от прочно фиксированных особенностей строения только поверхностного слоя протоплазмы — ее мембраны. Свойствам всей массы протоплазмы, равно как и других компонентов клетки, мембранная теория никакой роли не отводила. В противоположность мембранной теории, протоплазматическая теория рассматривает проницаемость как свойство, обусловленное всем комплексом процессов жизнедеятельности протоплазмы. Клеточный метаболизм и является, согласно этой теории, фактором, регулирующим поступление и выделение веществ, кинетику этих процессов, равновесное распределение веществ между отдельными категориями органоидов протоплазмы и т. д. [c.75]

    Мембрана, как и любая открытая система вблизи равновесия, при неизменных внешних условиях стремится к устойчивому стационарному состоянию, которое характеризуется минимальным положительным значением производимой энтропии. Диссипативная функция Ч , определяемая соотношением типа (1.9), обладает свойством потенциала, т. е. минимальна в стационарном состоянии, которое устойчиво и однозначно, если. сохраняется линейность связей между потоками и силами, положенная в основу феноменологических уравнений (1.7) и соотношения Онзагера (1.8). [c.26]

    Представленные в данном разделе структурно-кинетические модели позволяют посмотреть на связь структура мембраны-свойства с различных и довольно многочисленных точек зрения. Практически в основе каждой модели заложено то или иное представление о механизме влияния структуры на транспорт ионов в локальном масштабе перенос ионов описывается одними и теми же уравнениями (главным образом, уравнением Нернста-Планка), различие заключается в способе усреднения коэффициентов переноса в масштабе, характеризующем мембрану. Каждая модель позволяет понять роль одного или двух факторов, определяющих массо-перенос в мембране. Так, перколяционная модель хорошо описывает влияние влагосодержания на проводимость мембраны микрогетерогенная модель объясняет роль концентрации раствора и учитывает вклад в перенос как крупных (межгелевые промежутки), так и мелких гор (гелевые участки) капиллярные и ячеечные модели позволяют понять роль электростатического и некоторых других видов взаимодействия в переносе ионов. Поэтому представленные модели дополняют друг друга, помогая воссоздать сложную картину транспорта ионов путем выявления важных деталей этой картины. [c.192]

    Для пористых мембран процесс массопереноса газа в жидкость более сложный. Если давление газа поддерживается меньшим, чем давление образования первого пузырька на пористой мембране, то не возникает суш ественного перепада давления мембраны и массоперенос происходит посредством диффузии в порах мембраны. Если мембрана выполнена из гидрофильного материала, то пузырьки образуются на стороне газовой фазы и поры наполнены водой. Этой ситуации следует избегать, поскольку коэффициенты диффузии в воде существенно меньше, что увеличивает сопротивление массопереносу на мембране. Если мембрана выполнена из гидрофобного материала, пузырьки образуются на мембране со стороны водной фазы, а поры заполнены газом. В этом случае массоперенос через поры (в газодинамическом или кнудсеновском режиме) зависит от структуры мембраны, свойств газа и общего давления. При этом сопротивление массопереносу самой мембраны меньше, чем сопротивление массопереносу жидкости вблизи мембраны. [c.175]

    Сброс давления взрыва через предохранительные устройства. К устройствам, осуществляющим принудительный сброс давления при взрыве, относятся сбросные предохранительные клапаны, откидные заслонки, люки, мембраны и другие, отверстия в которых раскрываются при срабатывании детонатора по сигналу индикатора взрыва. Решение вопроса о возможности сброса давления взрыва через предохранительные устройства должно приниматься с учетом физико-химических свойств сбрасываемой среды токсичности, вероятности образования вторичного взрыва при соприкосновении с атмосферой, а также объема сосуда. Устройства для принудительного сброса давления целесообразно применять в тех случаях, когда обычные разрывные мембраны оказываются недостаточно чувствительными. Например, такими устройствами защищают циклоны и мешочные фильтры в установках для измельчения ацетатной целлюлозы и пиритов, а также при дроблении и сушке различных твердых материалов. Как правило, метод сброса давления через предохранительные устройства применяют в различных комбинациях с другими методами активной взрывозащиты. Сброс давления взрыва обычно осуществляется так, чтобы при начальном атмосферном давлении в защищаемом аппарате максимальное избыточное давление не превышало 7 кПа. [c.177]


    В промышленности получили распространение процессы, основанные на фильтровании растворов через полупроницаемые перегородки (мембраны). Ультрафильтрование при давлении 0,1— 0,5 МПа обеспечивает отделение частиц размером до 0,5 мкм, а использование обратного осмоса при давлении 3—10 МПа позволяет производить очистку растворителя от частиц, равных диаметру молекул или гидратированных ионов. Качество разделения зависит от природы и концентрации соединений в сточных водах, от температуры, давления и конструкции аппарата, В результате очистки воды получается 5—20 % раствор солей и вода, которая по своим свойствам чаще всего удовлетворяет санитарным и технологическим требованиям [5,22, 5.24, 5.55, 5.64]. [c.475]

    К— коэффициент, учитывающий свойства материала мембраны (для алюминия А =0,33—0,38). [c.89]

    Первое сообщение о возможности практического использования явления селективной проницаемости компонентов газовой смеси через полимерные или металлические перегородки — мембраны было сделано Грэхемом в середине XIX века. Однако от открытия явления до его промышленного применения прошло более столетия. Это объясняется, прежде всего тем, что в то время промышленность не была подготовлена к использованию этого явления. Внедрению мембранного метода разделения газов в промышленность способствовали результаты изучения явлений, связанных с селективным переносом молекул газов через сплошные (гомогенные) и микропористые мембраны, имеющие неорганическую или полимерную природу, успехи в синтезе полимеров с газоразделительными свойствами, разработка методов получения высокопроизводительных (асимметричных, композиционных, напыленных и т. д.) полимерных, металлических и керамических мембран, создание конструкций и методов расчета мембранных аппаратов и установок. [c.6]

    Для мембран первого типа характерно, что матрица исходного материала и компоненты газовой смеси не обладают заметной энергией связи, их взаимодействие ограничено столкновением молекул газа с поверхностью материала мембраны, появление конденсированной фазы разделяемых газов исключено. Химический потенциал компонента смеси является функцией только объемных свойств разделяемой смеси. Влияние свойств матрицы на процесс разделения определяется ее поровой структурой, лимитирующей те или иные виды массопереноса. Примером разделительных систем такого типа являются пористые стекла и достаточно разреженные газовые смеси. [c.13]

    Мембраны второго типа характеризуются существенным влиянием поверхностных явлений, прежде всего адсорбции возможно появление конденсированной фазы и эффекта капиллярности химический потенциал компонента зависит не только от температуры, давления и состава газовой смеси, но также и от свойств матрицы за счет поверхностной энергии. Влияние скелета мембраны на процесс разделения не ограничено, как в газодиффузионных, чисто структурными характеристиками, а предполагает появление новых видов массопереноса. Однако транспорт компонентов в основном материале мембраны исключен. Примером такого рода систем являются микропористые структуры и газовые смеси под давлением, содержащие компоненты со значительной молекулярной массой. [c.13]

    Рассмотрим процессы в идеальном разделительном устройстве. Исходная газовая смесь компонентов с параметрами Т и Р поступает в разделительную камеру достаточно большой емкости — это условие позволит считать параметры смеси неизменными в процессе разделения, а саму газовую смесь в камере рассматривать как внешнюю среду. Проницание компонентов через идеальные полупроницаемые мембраны не требует, согласно второму свойству, затрат работы, чистый компонент за мембраной находится в состоянии равновесия с газовой смесью, т. е. характеризуется значениями мембранных молярных величин р , Т = Т, Soi(T, р, ), Яог(7 , р, ) и Pi )- [c.231]

    Нелинейность подобной системы обусловлена торможением процесса в результате связывания фермента в неактивный комплекс Е8 при повышенных концентрациях субстрата этот процесс аналогичен изменению свойств матрицы мембраны при значительной растворимости газов. [c.35]

    Пористые мембраны представляют гетерогенные системы с весьма развитой поверхностью раздела твердое тело (матрица)— газ. Известно, что состояние газа или жидкости вблизи поверхности раздела фаз отличается от свойств той же среды в большом объеме. Особенности поведения веществ в этой области принято называть поверхностными явлениями. Термодинамически поверхностные явления трактуются как проявление особого вида взаимодействия системы, которое характеризуется уменьшением свободной энергии Гиббса при переходе вещества из объемной в поверхностную фазу. Убыль свободной энергии Гиббса пропорциональна площади поверхности и количественно определяется работой, которую необходимо затратить на образование поверхности или перемещения массы из объема в поверхностный слой в изотермическом процессе. Следовательно, речь идет о существовании потенциала поверхностных сил. [c.42]

    Подытоживая сказанное о поверхностных явлениях в пористых средах, можно утверждать, что в результате равновесного взаимодействия матрицы пористой мембраны и газовой смеси компоненты последней могут находиться в трех различных состояниях объемной газовой фазы, свойства которой определяются ее составом и внешними параметрами (температура, давление и внешнее силовое поле) адсорбированной фазы, состав которой определяется уравнением изотермы адсорбции при известном составе объемной газовой фазы (адсорбированную пленку можно рассматривать как жидкость в силовом поле, характеризуемом адсорбционным потенциалом) конденсированной объемной фазы, находящейся под действием силового поля, определяемого капиллярным потенциалом. [c.53]

    Соотношения между количествами и составами этих фаз зависят от структуры и свойств матрицы пористой мембраны, состава газовой смеси и внешних параметров системы, прежде всего температуры и давления. [c.53]

    Таким образом, если в пористой мембране удается организовать режим свободномолекулярного течения, проницаемость каждого компонента газовой смеси в изотермических условиях определяется структурными характеристиками мембраны, температурой и молекулярной массой газа и не зависит от давления. Разделительная способность является функцией только соотношения молекулярных масс и не зависит ни от свойств мембраны, ни от параметров процесса Г и Р. Из соотношения (2.52) следует, что для мембраны определенной структуры существует комплекс величин, сохраняющий постоянное значение при разделении любых смесей при любых значениях температуры и давления, если Кп>1  [c.57]

    Скорость массопереноса, характеризуемая коэффициентами диффузии газов в конденсированных средах, невелика и обычно на несколько порядков меньше, чем в объемной газовой фазе или при свободномолекулярном течении. Поэтому для получения мембран удовлетворительной проницаемости стремятся уменьшить толщину плотного слоя, который принято называть селективным или диффузионным. Наиболее перспективны асимметричные и двухслойные мембраны, протяженность селективного слоя которых порядка м. Механическая прочность и другие технологические свойства мембраны обеспечены пористым слоем подложки толщиной 30—500 мкм, диффузионное сопротивление которого незначительно. [c.71]

    Таким образом, структурно-морфологические свойства мембраны, существенные для процесса разделения, в наиболее общей форме характеризуются долей непроницаемой дисперсной фазы и относительным свободным объемом в аморфной фазе. Предельные случаи соответствуют кристаллической структуре и высокоэластичному состоянию полимеров при температуре выше температуры стеклования. [c.72]

    Таким образом, идеальный фактор разделения оказывается функцией параметров парного потенциала молекулярного взаимодействия ац и Ей [см. уравнения (3.12) —(3.15)] и координационных чисел Za и Z,/ в конденсированной фазе чистых компонентов. Постоянные Ь и и, характеризующие свойства матрицы мембраны, могут быть рассчитаны по известным значениям коэффициентов диффузии и растворимости близких го- [c.106]

    Влияние свойств матрицы мембраны на селективность проницания [c.111]

    Синтез новых полимеров и особенно применение сополимеров и композиционных материалов с их неисчерпаемыми возможностями изменять структуру мембранной матрицы в принципе делает полимерные мембраны наиболее перспективным типом разделительных систем, позволяющим в максимальной степени удовлетворить специфике каждой конкретной задачи, хотя проблема оптимизации свойств материала в сочетании с другими технологическими требованиями остается весьма сложной задачей. [c.114]

    Кристаллические и, плотные аморфные материалы обычно непригодны для создания мембран. Это обусловлено малой долей свободного объема и большим временем релаксации для процессов перераспределения вакансий и других дефектов структуры, в результате чего резко снижается растворимость газов и скорость миграции растворенного вещества. Равновесные и кинетические свойства подобных систем во многом определяются высокими значениями потенциала межатомного (межмолекулярного) взаимодействия, обычно превышающего средние значения кинетической энергии КьГ этим объясняется малая подвижность структурных элементов. Однако легкие разы типа Нг, Не, Оа, N2 с наиболее низкими значениями параметров (е,/, о, ) парного потенциала молекулярного взаимодействия могут в некоторых плотных матрицах образовывать системы с повышенной растворимостью и удовлетво рительными диффузионными характеристиками. Наиболее перспективны металлические мембраны на основе палладия для извлечения водорода, а также стекла для выделения гелия [8, 10, 19—21]. [c.114]

    Если полученные результаты не удовлетворяют поставленной цели, например Ср меньше заданной величины, или не обеспечивается нужная степень разделения, необходимо изменить параметры питающего потока и прежде всего давление, в некоторых случаях выявляется непригодность мембраны с данными свойствами (а,/ и Л,) для реализации одноступенчатого процесса. [c.153]

    Анализ энергетического совершенства основной стадии мембранного процесса — селективного проницания — выполнен в разд. 7.2.2, где исследовано влияние свойств мембраны и параметров газовой смеси на локальные характеристики процесса. [c.262]

    Аналитический аппарат для определения кинетических и термодинамических характеристик процесса разделен 1я изложен в главах 4—7, при этом необходимо учесть изменение газоразделительных свойств мембраны под воз-действием меняющихся условий (см. гл. 2 и 3). Обычно редки случали, когда удается получить аналитические формы искомых функций. [c.270]

    Мембраны. Для разделения изотопов используются как полимерные мембраны, так и мембраны из неорганических материалов— металлов и их оксидов, керамики, стекла. Мембраны могут быть как пористыми, так и сплошными, иметь гомогенную или анизотропную структуру и т. д. Выбор типа мембраны (из перечисленных выше) для разделения газов с близкими молекулярными массами и U), обладающих схожими физико-химическими свойствами,— задача весьма трудная. Усложняет- [c.314]

    При выборе мембран для работы в условиях радиоактивного облучения следует учитывать влияние радиации на их свойства — проницаемость, механическую прочность и время жизни . Так, мембраны из силиконового каучука стабильно работают в этих условиях только до величины дозы порядка 10 рад [99]. [c.316]

    Анализ влияния газоразделительных свойств мембран на параметры процесса разделения представлен на рис. 8.36, 8.37 ЦП]. Из рисунков видно, что с увеличением коэффициента деления потока 0 растет степень извлечения гелия из газов, но одновременно падает его концентрация в пермеате. Для достижения 85%-й степени извлечения гелия (ф = 0,85 является параметром криогенного процесса получения гелия) и высокой степени обогащения необходимо применять мембраны с фактором разделения а ЗО. Однако результаты расчетов [112, ПЗ] показали, что увеличение фактора разделения мембран выще 50—100 не приводит к значительному росту концентрации гелия в пермеате табл. 8.23. Как видно из таблицы, при выборе мембран для извлечения гелия, кроме селективности, важным параметром является и проницаемость. Так, при увеличении фактора разделения в 100 раз степень обогащения возрастает только в 5 раз, в то время как поверхность мембран увеличивается в 8000 раз (при одинаковой степени извлечения гелия). [c.325]

    В молочной промышленности ультрафильтрация широко используется для обработки сыворотки, т. е. жидкости, которая остается после коагуляции молока при производстве сыра. Избавление от сыворотки, связанное с высокой биохимической потребностью в кислороде, создает трудности из-за низкой концентрации в сыворотке органических веществ. С помощью ультрафильтрации из сыворотки удается извлечь такие белки, как лактоглобулин и лактальбумин [60, 114], и такой сахар, как лактозу. Многие годы сыворотку подвергали упариванию для получения сыра типа рикотта использование же для этой цели ультрафильтрации дает большую (до 50 %) экономию энергии. Мембраны, применяемые для обработки сыворотки, могут изготавливаться как из ацетилцеллюлозы, так и из нецеллюлозных материалов. Первые обладают большей пропускной способностью, но чувствительны к гидролизу и легко забиваются. Значения НОММ используемых мембран колеблются от 20 000 до 100 000, причем задерживается 98—100 % белков, но пропускаются соли и сахара. В сыре, получаемом из сыворотки с помощью ультрафильтрацни, содержание белка на сухой вес может достигать 30—70 %, что соответствует увеличению концентрации белка от 5 до 30—40 раз. В крупномасштабном производстве важное значение приобретает удельная производительность, которая в зависимости от типа используемой мембраны, свойств сыворотки и заданной степени концентрирования может достигнуть 40—80 л/м в час. [c.366]

    На полимеризаторах (в цехах полимеризации), где свойства среды вызывают особо повышениую возможность забиски предохранительных клапанов, необходимо предусматривать установку предохранительного устройства, состоящего из пружинного предохранительного клапана и взрывной предохранительной мембраны, защищающей клапан от воздействия среды. [c.151]

    После доставки непосредственно к месту действия в организме, как дальше работает леклрство Специфичность лекарств, подобная специфичности ферментов, часто зависит от формы молекулы. Многие лекарства действуют на рецепторы — области белка или клеточной мембраны, по форме и химическим свойствам соответствующие лекарствам, - помогая начать требуемый биологический ответ (подавление боли, понижение температуры и т. д.) [c.481]

    Мембранное разделение газовых смесей основано на действии особого рода барьеров, обладающих свойством селективной проницаемости компонентов газовой смеси. Обычно мембрана представляет собой жесткую селективно-проницаемую перегородку, разделяющую массообменный аппарат на две рабочие зоны, в которых поддерживают различные давления и составы разделяемой смеси. В общем случае понятие мембраны не обязательно связано с существованием такой перегородки и перепадом давления. В широком смысле под мембраной следует понимать открытую неравновесную систему, на границах которой поддерживаются различные составы разделяемой смеси под действием извне полей различной природы (ими могут быть поля температуры и давления, гравитационное и электромагнитное поле, поле центробежных сил). Разделительная способность такой системы формируется комплексом свойств матрицы мембраны и компонентов разделяемой смеси, их взаимодействием между собой. Существенна и степень неравновесностн такой системы. [c.10]

    В газодиффузионных мембранах влияние матрицы на перенос массы определяется только характеристиками поровой структуры и, прежде всего функцией распределения пор. Свойства исходного материала не сказываются на кинетике процесса, хотя могут ограничивать область использования, рели спектр размеров пор достаточно широк, то в мембарне при заданных параметрах газовой смеси может одновременно реализоваться несколько режимов течения для каждого компонента. Если же учесть, что фильтрационный перенос и концентрационная диффузия не способствуют разделению смеси, то очевидно, что более целесообразны мембраны с монокапиллярной структурой типа пористого стекла Викор , в которых можно создать свободномолекулярный режим течения. Обсудим закономерности массопереноса при этом режиме. [c.54]

    Мембраны. Для селективного выделения СО2 и НгЗ из смесей газов, содержащих в основном метан, в промышленном масштабе опользуют только полимерные (асимметричные или композиционные, плоские или в виде полых волокон) мембраны. В табл. 8.8 представлены характеристики мембран, полученных из наиболее перспективных полимерных материалов, применяемых для этих целей (в том ч И Сле и для получения гелиевого концентрата). Как видно из таблицы, лучшим. комплексом свойств для выделения СО2 и НгЗ обладают плоские асимметричные мембраны из ацетата целлюлозы, ультратонкие (с толщиной селективного слоя до 200 А) мембраны из сополимера поликарбоната с полидиметилоилоксаном (МЕМ-079), а также полые волокна на основе ацетата целлюлозы и полые волокна из полисульфона с полиорганосилоксаном типа КМ Монсанто . Перспективным представляется использование для очистки газов от СО2 и НгЗ высокоселективной мембраны на основе блок-сополимера Серагель [56]. [c.286]

    Для разделения радиоактивных благородных газов наибольшее распространение нашли полимерные мембраны в виде полых волонон, изготовленные из силиконового каучука (сплошная мембрана) или из ацетата целлюлозы (микропористое волокно), а также микропористая пленка из 4-фторэтилена— табл. 8.20, 8.21. Из табл. 8.21 видно, что селективные свойства [c.315]

    При получении полупроницаемых мембран используют различные материалы полимерные пленки, стекло, металлическую фольгу и др. Наибольшее распространение получили мембраны на основе различных полимеров. Полимерные мембраны приготовляются по специальной технологии, так как первые исследования показали, что, как правило, пленки, выпускаемые промышленностью для других целей, не обладают селективными свойствами. В настоящее время известно большое число полимерных мембран, подробный перечень которых приведен в монографии Кестинга [10]. [c.45]


Смотреть страницы где упоминается термин Мембраны свойства: [c.175]    [c.111]    [c.230]    [c.249]    [c.272]    [c.330]    [c.47]   
Теоретические основы биотехнологии (2003) -- [ c.35 , c.36 , c.37 ]

Ионообменная технология (1959) -- [ c.143 ]

Ионообменная технология (1959) -- [ c.143 ]




ПОИСК







© 2025 chem21.info Реклама на сайте