Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Петля гистерезиса для магнитного материала

Рис. 4.1. Петля гистерезиса для магнитного материала. Рис. 4.1. <a href="/info/23276">Петля гистерезиса</a> для магнитного материала.

    Карбонильное железо характеризуется специфической кривой первоначального намагничивания, соответствующей формой петли гистерезиса и определенными значениями составляющих магнитных потерь. При этом электромагнитные свойства карбонильного железа в блоке, получаемом металлокерамическим способом из порошка, и в частицах порошка существенно различны. Это в первую очередь объясняется изменением структуры материала при его металлокерамической обработке, а также влиянием на электромагнитные свойства размера частиц. [c.166]

    Связь между напряженностью приложенного магнитного поля и магнитной индукцией в образце с упорядоченным магнетизмом, выражается обычно петлей гистерезиса. Петля гистерезиса рис. 4.1) характеризуется максимальной индукцией Вт, остаточной индукцией Вг и коэрцитивной силой Не. Остаточная индукция и коэрцитивная сила магнитного материала зависят от структуры, включений и внутренних напряжений в материале. Максимальная индукция насыщения не чувствительна к структуре и зависит только от химического состава и температуры. [c.94]

    При намагничивании магнитного материала переменным полем петля гистерезиса, характеризующая затраты энергии в течение одного цикла перемагничивания, расширяются (увеличивают свою площадь) как за счет потерь на гистерезис, так и потерь на вихревые токи и дополнительные потери. Такую петлю называют динамической, а сумму составляющих потерь - полными потерями. Геометрическое место вершин динамических петель гистерезиса называют динамической кривой намагничивания, а отношение индукции к напряженности поля на этой кривой - динамической магнитной проницаемостью [c.32]

    Сложный характер одновременного влияния (часто в противоположных направлениях) различных факторов на магнитные свойства материалов затрудняет их разграничение и определение влияния каждого. В некоторых простых случаях имеется возможность определить влияние одного или нескольких основных факторов на размеры и форму петли гистерезиса. В случае, если этот фактор одновременно и однозначно влияет на другие физические (немагнитные) свойства материала, можно установить [c.165]

    Перспективными для использования в многоэлементных преобразователях являются преобразователи магнитных полей на основе кольцевых сердечников из материала с прямоугольной петлей гистерезиса. Достоинством таких преобразователей является наличие у них вентильных свойств, что делает ненужным применение электронных коммутирующих ключей в каждой ячейке матрицы. При этом отсутствует гальваническая связь между отдельными чувствительными элементами, сушественно упрощается конструкция много- [c.144]


    СИТ название петли гистерезиса (отставания),Изменение индукции при перемагничивании материала идет термодинамически необратимо за один цикл перемагничивания затрачивается энергия, количество которой пропорционально площади петли гистерезиса. Кроме потерь на гистерезис при действии на материал переменного магнитного поля, в нем появляются вихревые токи, на создание которых потеря энергии тем больше, чем меньше удельное сопротивление материала. [c.349]

    Петли гистерезиса бывают самыми разнообразными по форме. Одним из факторов, влияющих на форму петли, является размер частиц образца, причем увеличение их размера приводит, как правило, к тому, что материал становится более мягким, т. е. уменьшается поле, необходимое для его перемагничивания (рис. 4.22. и 4.23). Объясняется это тем, что основным процессом при намагничивании очень мелких однодоменных частиц является поворот магнитного момента частицы в сторону поля (рис. 4.24, А), в то время как намагничивание крупных частиц осуществляется путем смещения доменных стенок, происходящего при меньших полях, чем поворот моментов (рис. 4.24, Б). Частицы среднего размера обычно бывают разделены на области-домены с разным направлением намагниченности, что уменьшает энергию магнитного поля, создаваемого магнитным моментом частицы. [c.199]

    Магнитный вид неразрушающего контроля основан на анализе взаимодействия магнитного поля с контролируемым объектом. Его, как правило, применяют для контроля объектов из ферромагнитных материалов. По характеру взаимодействия физического поля с объектом этот вид контроля не дифференцируют во всех случаях используют намагничивание объекта и измеряют параметры, используемые при контроле магнитными методами. Процесс намагничивания и перемагничивания ферромагнитного материала сопровождается гистерезисными явлениями (рис. 1.1). Свойства, которые требуется контролировать (химический состав, структура, наличие несплошностей и др.), обычно связаны с параметрами процесса намагничивания и петлей гистерезиса. [c.9]

    Сложный характер одновременного влияния (часто в противоположных направлениях) различных факторов на магнитные свойства материалов, как правило, не позволяет их разграничить и определить влияние каждого. Только в некоторых (простых) случаях имеется возможность определить влияние одного или нескольких (основных) факторов на размеры и форму петли гистерезиса. В случае, если этот фактор одновременно и однозначно влияет на другие физические (немагнитные) свойства материала, можно установить связь между ними и использовать магнитные свойства для контроля физических или химических свойств (параметров). [c.361]

    МАГНИТОСТРУКТУРНЫЙ АНАЛИЗ — анализ свойств магнитных материалов, основанный на использовании зависимости их магн. характеристик от структуры. К важнейшим магн. характеристикам относятся магнитная восприимчивость, магнитная проницаемость, намагниченность насыщения, коэрцитивная сила. У диамагнитных материалов магн. восприимчивость X отрицательна, у парамагнитных материалов положительна, вследствие чего диамагнетик выталкивается из неоднородного магн. поля, а парамагнетик втягивается в него. По силе выталкивания или втягивания судят о знаке или абс. величине магн. восприимчивости. А поскольку при фазовом превращении в твердом состоянии и при плавлении она изменяется скачкообразно, этим обстоятельством пользуются для определения фазового состояния материала. У ферромагнитных материалов магн. восприимчивость — неоднозначная функция магн. поля. Связь между намагниченностью ферромагнетика и напряженностью намагничивающего магн. поля изображается кривой намагничивания и петлей гистерезиса. В процессе намагничивания магн. проницаемость ферромагнетика л = 1 4- [c.749]

    Петля магнитного гистерезиса - зависимость магнитной индукции (намагниченности) магнитного материала от напряженности внешнего магнитного поля. [c.410]

    Указанные особенности позволяют объяснить изменения магнитных характеристик в зависимости от режимов охлаждения. Действительно, для феррита из материала 1,3 ВТ незначительное изменение статических параметров петли гистерезиса с изменением температуры начала разрежения соответствует сравнительно мало- Му изменению величины у в пределах однофазной шпинельной структуры. Вместе с тем импульсная квадратность сердечников иУ 1й]/г), являющаяся более чувствительной характеристикой к изменению дефектности шпинели [189], значительно снижается по [c.144]

    Если образец магнитноупорядоченного материала намагнитить до насыщения, а затем снять намагничивающее поле, то образец будет находиться в так называемом остаточном состоянии, т. е. обладать остаточной индукцией. Коэрцитивная сила является величиной, наиболее чувствительной к структуре магнитного вещества. Таким образом, по форме петли гистерезиса можно судить об особенностях свойств различных магнитных материалов. Материалы для эластичных постоянных магнитов (магнитнотвердые резины) должны характеризо- [c.94]


    Не и уменьшением остаточной индукции и коэффициента прямоугольности Кп. Образец, отожженный при 300°С, сохраняет исходные магнитные характеристики, чему соответствует неизменное значение постоянной решетки и фазового состава материала. Отжиг при 400°С и выше приводит к ухудшению статических параметров петли гистерезиса, а на рентгенограммах появляется значительное расширение линий и искажение их формы, свидетельствующее о неоднородности материала. Последнее может стать результатом окисления, идущего в первую очередь по границам [c.148]

    Магнитный гистерезис — явление очень важное. По форме петли все магнитные материалы можно разделить на две большие группы мягкие магнитные материалы и жесткие, или высококоэрцитивные. Мягкий магнитный материал должен иметь кривую намагничивания с большой проницаемостью (характеризующую кривизну подъема кривой, см. рис. 125), достигаемой в очень слабых полях, и очень узкую петлю гистеризиса с ничтожно малой коэрцитивной силой. Важнейшее значение мягких магнитных материалов в экономике страны видно, например, из той роли, которую играют в ней трансформаторное и динамное листовое железо. Жесткий магнитный материал для выполнения своего назначения стабильного источника сильного магнитного поля должен обладать максимально широкой петлей гистерезиса, т. е. максимальными коэрцитивной силой и остаточной индукцией. [c.322]

    Рассмотрим теперь петлю магнитного гистерезиса (см. ниже) как характеристику магнитного материала, и в первую очередь зависимость формы петли от размера зерен. Нужно отметить трудоемкость получения петли гистерезиса с помощью сквид-магнитометра, поскольку для изменения намагничивающего поля в сквид-системе требуется отогреть и вновь охладить сверхпроводящий экран при новом значении поля. [c.198]

    Известно, что форма и размеры петли гистерезиса зависят от химического состава материала, определяющего кристаллографическую анизотропию, наличие и расположение примесей и атомов легирующих элементов, микро- и макронапряжения, наличие и расположение дислокаций и т. п. Сложный характер взаимосвязи между указанными факторами затрудняет установить корреляционную связь каждого из них с магнитными свойствами материала. В некоторых случаях можно определить влияние одного или нескольких основных факторов на размеры и форму петли гистерезиса. [c.72]

    В литературе можно найти многочисленные примеры исследования влияния давления на параметры индуктивных элементов. Индуктивность компонентов, содержащих железный порошок в пластиковой матрице, обычно пропорциональна давлению, однако эти изменения не носят постоянного характера. Единственный описанный в литературе случай существенного остаточного изменения параметров в результате воздействия давления связан со специальным сердечником из материала с ориентированной зеренной структурой и с прямоугольной петлей гистерезиса. Сведения о влиянии давления на элементы устройств магнитной памяти в литературе найти не удалось, но можно предположить, что такие компоненты будут выходить из строя при однократном повышении давления, поскольку в них используются материалы, аналогичные применяелйлм в ориентированных сердечниках с прямоугольной петлей гистерезиса. [c.482]

    Характер наблюдаемых изменений позволяет понять их причину. Прежде всего, необходимо обратить внимание на принципиально иной, по сравнению с феррожидкостями, характер зависимости намагниченности суспензий от напряженности поля — наличие гистерезиса. Гистерезис — это несовпадение зависимостей свойства (намагниченности) от параметра состояния (напряженности поля), получаемых при увеличении и при уменьшении значения параметра состояния. Гисте-резис намагниченности наглядно представляется в виде петли гистерезиса (рис. 3.73). Намагничивание суспензии однодоменных частиц магнитно-жесткого материала при напряженности магнитного поля меньшей, чем коэрцитивная сила частиц, возможно только путем механического поворота частиц в магнитном поле достаточно большой напряженности Я. Она должна быть такой, чтобы крутящий момент [тН], действующий на частицу со стороны магнитного поля, превысил момент [c.665]

    В режиме А нарушения сплошности определяют при высоких намагниченностях, когда магнитное состояние материала изделия соответствует индукциям, близким к предельной петле гистерезиса. Конструкционные стали относятся, как правило, к группе ферромагнитных материалов с нормальными петлями гистерезиса, у которых отношение остаточной индукции Вг к максимальной 5тах на предельной петле гистерезиса приблизительно постоянно и равно 0,5. .. 0,7. Для режима А оказалось возможным за критерий выбора расчетной формулы взять значение остаточной индукции. [c.348]

    ИНДУКЦИЯ НАСЫЩЕНИЯ (лат. 1пс1ис11о — наведение, возбуждение) — магн. индукция при такой напряженности магн. поля, когда намагниченность материала становится максимальной. Для большинства материалов абс. магн. насыщение неосуществимо, для остальных — возможно в очень сильных нолях, когда намагниченность насыщения /о не зависит от поля. Магнитные материа.гы, гл. обр. магнитпо-мяг-кие, характеризуются индукцией технического насыщения — магн. индукцией, при к-рой намагниченность материала достигает значения технического насыщении — состояния, когда векторы намагниченности всех доменов ориентируются в направлении намагничивающего поля с напряженностью Н . С увеличением наиряженности поля петли гистерезиса остаются одинаковыми. И. н. зависит только от природы ферромагнитных фаз магн. материала и не зависит от технологии мех. обработки. В размагниченном состоянии при т-рах, не превышающих Кюри точку, каждый домен ферромагнетика благодаря действию внутрикристалличе- [c.501]

    К сожалению, нельзя использовать ток, проходящий через катушки электромагнита для определения массовых чисел, вследствие эффекта гистерезиса. Чтобы измерять массы в области до 200 массовых единиц с точностью до 0,2 а. е. м. (10 %), требуется измерение магнитного поля с точностью до 5-10 и специальное приспособление — измеритель масс, который в процессе развертки масс-спектра непрерывно регистрирует развертываемые массы, значения которых оператор наносит на спектр. В ином случае измеритель должен делать отмэтки на регистрируемом спектре, соответствующие заранее определенной величине отношения массы к заряду регистрируемых ионов. Для очень точных определений масс предпочтительнее использовать измерение электростатического потенциала, так как необходимо оценивать эффективное магнитное поле на всем пути движения иона, что сложно. Измерения магнитного поля на небольшом участке недостаточны для оценки этого эффективного поля вследствие неоднородности магнитного материала, обусловливающего разницу в полях на различных участках поверхности магнита. Положительные ионы в масс-спектрометре проходят через области поля рассеяния, поэтому лучшая характеристика магнитного поля может быть, вероятно, получена в том случае, если измерительное устройство помещено не в области однородного поля около центра полюса, а на участках, подверженных также действию рассеянных полей. Различия отдельных участков поля между полюсами могут изменяться в зависимости от гистерезисиой петли. Эта разница сравнительно невелика и не мешает применению измерителей магнитного поля для определения масс с точностью до 0,1%. [c.57]

    В заключение отметим, что собственное атомное разупорядочение существенным образом влияет на магнитные свойства ферритов и это обстоятельство надо учитывать, когда надо получить материал со строго повторяющимися параметрами. В качестве технологического приема, стабилизирующего магнитную индукцию и квадратность термостабильной петли гистерезиса, иногда рекомендуют дополнительные к основной термообработке отжиги при температурах 700—800°С в течение времени, достаточном для равновесного перераспределения ионов по подрешеткам (продолжительность отжига зависит от природы феррита [2]). Примером значительного влияния собственно атомного разупорядочения на магнитные свойства является поведение феррита никеля, резко закаленного с высоких температур и обладающего определенной концентрацией ионов N1 + в Л-узлах решетки (при 1300°С в формуле Ре " [Ы1 Ре2111л ]04 д = 0,9955). Как показали измерения [142], появление N1 + в тетраэдрических узлах шпинельной структуры приводит к изменению анизотропии кристалла и ширины линии ферромагнитного резонанса. [c.116]

    Так, например, однополупериодиый магнитный усилитель (рис. Х-1) представляет собой дроссель насыщения ДЯ с рабочей ОР и управляющей ОУ обмотками. Материал сплава, из которого выполнен сердечник дросселя, обладает петлей гистерезиса, форма которой близка к прямоугольной. В цепь рабочей обмотки, получающей питание от сети переменного тока через трансформатор 1Т, включены выпрямитель ВР и сопротивление нагрузки СН, с которого и снимается импульс отпирающего напряжения. Обмотка управления включена через сопротивление управления СУ в сеть постоянного тока. СС и Е — сеточные сопротивления и конденсатор СЗН, ЕЗН, ВЗН и ТЗН — сопротивление, емкость, выпрямитель и трансформатор запирающего напряжения. [c.226]


Смотреть страницы где упоминается термин Петля гистерезиса для магнитного материала: [c.461]    [c.118]    [c.152]    [c.165]    [c.435]    [c.540]    [c.175]    [c.185]   
Эластичные магнитные материалы (1976) -- [ c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Гистерезис

Магнитные материалы

Петля гистерезиса



© 2025 chem21.info Реклама на сайте