Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дезоксирибонуклеиновая кислота содержание основани

    Несмотря на то что область температурного перехода для ДНК относительно узкая, она все же шире, чем можно было бы ожидать для длинной идеально уложенной спиральной структуры. Внутри этой области с помощью метода электронной микроскопии удалось обнаружить только полностью денатурированные или совершенно нативные структуры [239]. И вновь внутри этой области понижение вязкости быстро достигает предельного значения, а дальнейшее понижение вязкости происходит только при повышении температуры, что указывает на существование известного распределения специфических температур денатурации. Вполне обоснованное объяснение этого заключается в том, что вклад двух типов пар оснований в стабильность спирали различен. В таком случае тепловая денатурация должна была бы зависеть от относительного состава либо всей двуспиральной структуры, либо ее отдельных больщих участков. Показано, что температуры плавления (т. е. точки перегиба на кривых зависимости оптической плотности от температуры), определенные в стандартных условиях (0,15 М хлористого натрия в 0,015 М цитрата натрия) для большого числа дезоксирибонуклеиновых кислот, различающихся по составу оснований, прямо пропорциональны содержанию гуанина и цитозина в нуклеиновой кислоте (рис. 8-20) [240]. Линейная зависимость температур плавления от содержания гуаиин-цитозиновых иар исключительно точна, и поэтому измерение этих температур может быть использовано для определения нуклеотидного состава данной ДНК [241, [c.574]


    Были определены температуры плавления в разбавленных растворах ряда дезоксирибонуклеиновых кислот различного состава [63—65]. Состав оснований, выраженный процентным содержанием пар Г — Ц, изменялся от О до 65 и температура плавления возрастала с ростом концентрации этих пар. Для синтетических нуклеиновых кислот, содержащих только пары А—Т, Тпл равна 65° С для природных дезоксирибонуклеиновых кислот, содержащих около 65% пар Г—Ц она увеличивается до 95° С. Этот факт можно объяснить тем, что обе пары способны к образованию различного числа водородных связей [67] так пара Г—Ц содержит три, а пара А—Т — только две водородных связи, следовательно различные пары вносят не одинаковый вклад в стабильность спирали [63, 64]. [c.134]

    Чистые нуклеиновые кис,лоты содержат около 15% ааота и 10% фосфора. В их состав входят гетероциклические основания, которые обусловливают сильное поглощение в ультрафиолетовой области спектра с максимумом вблизи 260 ммк (см. ниже). На 1 г-атом фосфора в нуклеиновой кислоте приходится 1 моль сахара в рибонуклеиновой кислоте (РНК) это D-рибоза, а в дезоксирибонуклеиновой кислоте (ДНК) — 2-дезокси-В-рибоза. Сахара можно идентифицировать и их содержание определить количественно [c.121]

    Изучение вирусов имеет большое значение для разрешения проблемы биосинтеза белка. На это указывает тог факт, что все, даже самые простые, вирусы содержат белок и нуклеиновые кислоты [113]. Низшие вирусы содержат только рибонуклеиновую кислоту, в состав же высших вирусов входит и дезоксирибонуклеиновая кислота. Высокое содержание нуклеиновых кислот в вирусах дает основание считать, что значительная часть их белков представляет собой кислые нуклеопротеиды. В области pH, лежащей между изоэлектрическими точками белков и нуклеиновых кислот, они могут соединяться с сывороточным альбумином и другими белками, образуя нерастворимые при низкой ионной силе мезоморфные волокна [114]. [c.398]

    И. М. Сисакян обнаружил в хлоропластах листьев сахарной свеклы и других растений значительные количества нуклеиновых кислот, причем, наряду с рибонуклеиновой кислотой, занимающей основное место, им впервые установлено также присутствие дезоксирибонуклеиновой кислоты. В зависимости от вида растения, возраста и других причин содержание РНК колеблется от 0,5 до 3,57о (от сухого веса). Оно изменяется в ходе развития растения, в частности, хлоропласты молодых листьев содержат РНК в 2—3 раза больше, чем старые. При старении листьев изменяется также качественный состав РНК, главным образом за счет возрастания отношения пиримидиновых оснований к пуриновым. Изменения содержания РНК хлоропластов в онтогенезе листьев протекают параллельно изменениям содержания белков. Эти данные согласуются с общепринятыми в настоящее время представлениями об участии РНК в синтезе белков. [c.106]


    Как известно, наследственная информация передается благодаря тому, что две комплементарные нитевидные молекулы дезоксирибонуклеиновых кислот обратимо связаны в двойную спираль. Комплементарность достигается тем, что каждая определенная пара нуклеиновых оснований (тимин — аденин, цитозин — гуанин) фиксирована водородными связями. Вызванное светом или радиацией образование димера по схеме (9.32) из находящихся рядом остатков тимина или цитозина нарушает структуру спирали, так что репликация ДНК во второй цепи двойной спирали останавливается у места повреждения. Соответствующая информация не может переноситься и вследствие этого появляются лучевые повреждения или мутации. Особенно чувствительны к таким воздействиям виды ДНК с высоким содержанием обоих пиримидиновых оснований. Однако в природе в результате приспосабливания выработались механизмы репарации, благодаря которым лучевые повреждения отчасти могут быть устранены [23]. Двуядер-ные нуклеиновые основания с пятичленными циклами — аденин и гуанин — мало чувствительны к облучению. [c.247]

    Кроме того, были изучены соотношения оснований дезоксирибонуклеиновой кислоты, которая является основой специфичности клетки, в том числе и бактериальной, что весьма существенно для выяснения механизма действия УФ-излучения. УФ-излучевие в дозе 300 мВт с/м вызывает статистически достоверное увеличение содержания тимина и изменение в показателе специфичности [c.138]

    Эти основания могут захватываться как сопутствующие вещества при экстрагировании гуминовых кислот из почвы и торфа и осаждении их из щелочного экстракта. В почве их присутствие возможно в виде дезоксирибонуклеиновой кислоты, содер жащейся в микроорганизмах. На присутствие именно дезоксирибонуклеиновой кислоты указывают соотношения между пуриновыми и пиримидиновыми основаниями в гуминовых кислотах. Пользуясь методом хроматографии на бумаге и ультрафиолетовой спектроскопии, Андерсон (Anderson, 1958, 1961) показал присутствие пуриновых оснований (гуанина и аденина) и пиримидиновых оснований (цитозина, тимина и урацила) в препаратах гуминовых кислот. Автор разработал метод количественного выделения этих оснований из препаратов гуминовых кислот. В гуминовых кислотах, выделенных из почв, им были обнаружены дериваты дезоксирибонуклеиновой кислоты. Ниже приведено содержание пуриновых и пиримидиновых оснований в гуминовой кислоте, выделенной из почвы  [c.65]


Смотреть страницы где упоминается термин Дезоксирибонуклеиновая кислота содержание основани: [c.141]    [c.141]    [c.248]    [c.418]    [c.433]    [c.442]    [c.520]   
Микробиология Издание 4 (2003) -- [ c.57 ]




ПОИСК





Смотрите так же термины и статьи:

Дезоксирибонуклеиновые кислоты

Основания и кислоты



© 2025 chem21.info Реклама на сайте