Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нативные белки, четвертичная структура

    Денатурация. Денатурация белков — сложный процесс, при котором под влиянием внешних факторов (температуры, механического воздействия, действия химических агентов и ряда других факторов) происходит изменение вторичной, третичной и четвертичной структуры белковой макромолекулы, т. е. ее нативной пространственной структуры. Первичная структура, а следо- [c.16]


    Денатурация белков — явление разрушения нативной (вторичной, третичной и четвертичной) структуры белка под действием химических и физико-химических факторов. [c.550]

    Структуры ревертаз — белков значительного размера — пока не установлены. Нативная ревертаза онкорнавирусов птиц имеет константу седиментации 7,5 8. Ревертазы обладают четвертичной структурой. [c.267]

    Несколько молекул белка, одинаковых или разных (субъединиц), могут соединяться друг с другом так возникает четвертичная структура белка. Так, например, молекула гемоглобина состоит из четырех субъединиц под действием мочевины она расщепляется на две неидентичные части, которые после удаления реагента могут вновь соединиться, воссоздавая нативный гемоглобин. Другой белок —вирус табачной мозаики, состоит из более чем двух тысяч субъединиц (рис. 68). [c.642]

    Применительно к белкам проблема самосборки является кардинальной. Генетически кодируется биосинтез (гл. 8), т. е. формирование первичной структуры белка. Однако биологически функциональна нативная пространственная структура белковой молекулы, возникающая в результате самосборки. Естественный отбор белков идет по пространственным — третичным и четвертичным — структурам. Молекулярная биология, молекулярная генетика не имели бы смысла, если бы между генетически предопределенной первичной структурой белка и его пространственным строением не было однозначного или вырожденного соответствия (см. 7.1). [c.108]

    Сравнительно слабые связи, ответственные за стабилизацию вторичной, третичной и четвертичной структуры белка, легко разрушаются что приводит к потере его биологической активности. Такое разрушение нативной структуры называют денатурацией. С физической точки зрения денатурацию можно [c.48]

    Проведя на колонке с гелем измерение Fe для нескольких белков с известной молекулярной массой, т.е. фактически осуществив градуировку колонки, можно определить Vg для исследуемого биополимера и путем интерполяции с помощью соотношения (7.6) найти его молекулярную массу. Существенно, что гель-хрома-тографию можно проводить в мягких условиях, сохраняя белок в нативном, функционально активном состоянии. Если в распоряжении экспериментатора имеется специфический тест на этот белок, пригодный для его выявления в смеси с другими белками, например определенная ферментативная активность, то определить молекулярную массу можно даже в неочищенном препарате белка т.е. уже на промежуточных стадиях его очистки. Если полимер имеет четвертичную структуру, то, как правило, она сохраняется в условиях разделения и молекулярная масса представляет собой сумму масс составляющих белок субъединиц. [c.268]


    В отличие от многих природных соединений ферменты обладают тонкой структурой от других белков их отличает особая топография молекул, характерная для активной формы фермента. Высокоспецифическая структура нативного фермента способна легко нарушаться под воздействием внешних факторов. У некоторых ферментов нарушение четвертичной структуры часто влечет за собой потерю активности, причем иногда инактивация необратима. Более глубокие изменения, затрагивающие конформацию всей полипептидной цепи, ведут к денатурации. Известны случаи поверхностной денатурации при контакте фермента с некоторыми сорбентами, основной причиной которой является сильное гидрофобное взаимодействие. Возможность инактивации или денатурации следует всегда учитывать при разработке схемы выделения и фракционирования ферментов. [c.7]

    Ассоциация отдельных полипептидных цепей друг с другом обусловлена теми же связями, которые определяют и стабилизируют вторичную и третичную структуры. Четвертичная структура является только одним из типов структуры белка, и ее нельзя рассматривать отдельно от других типов, особенно при анализе взаимодействия белок — растворитель. Следовательно, при выяснении вопроса о четвертичной структуре не следует упорно искать ответ на вопрос, какая же из всех возможных связей является наиболее важной при объединении полипептидных цепей в нативную белковую молекулу. Ее создание является кооперативным процессом, в котором участвуют все упомянутые ранее связи. [c.396]

    Интересно, что присутствие нити РНК внутри белковой гильзы придает всей структуре повышенную стабильность. Без РНК молекулы белка образуют четвертичную структуру вирусной палочки, но процесс их соединения может остановиться в любой момент и длина белковой гильзы определяется случайными обстоятельствами. Нолимеризуясь в присутствии цепи РНК, белковая палочка вируса приобретает длину, определяемую спиральной упаковкой РНК, т. е. такую же, как в нативном вирусе. [c.359]

    В настоящее время подробно изучено около 2000 ферментов. Как и белки, ферменты имеют сложную пространственную третичную и четвертичную структуру. Нативная (природная) структурная организация ферментов обеспечивает их каталитическую функцию. Нарушение ее под воздействием различных факторов приводит к потере активности ферментов. [c.90]

    Сложный процесс наблюдается при денатурации белка специфическая пространственная структура (четвертичная, третичная и вторичная) разрушается, и с точки зрения конформационных характеристик денатурированный белок представляет собой полный хаос . Денатурация — это такое изменение нативной конформации белковой молекулы, которое происходит при достаточно резком изменении внешних условий и сопровождается заметным изменением физико-химических свойств белка и полной потерей биологической активности. [c.103]

    Все четыре уровня организации белковой молекулы взаимосвязаны и обеспечивают нативную (естественную) конформацию каждого белка. В проявлении биологической активности белков особое место занимает третичная и четвертичная структуры, весьма чувствительные к изменению условий среды. Поскольку многие внутриклеточные ферменты имеют четвертичную структуру, то одним из механизмов регуляции их активности является изменение конформации белков. [c.238]

    Аминокислотные последовательности субъединиц белка, если таковые имеются, определяют ее четвертичную структуру. Это следует из данных рентгеноструктурного анализа, а также из факта реконструкции функционально активного нативного белка из диссоциированных субъединиц. В качестве примера белка, обладающего четвертичной структурой, может служить гемоглобин. В ацетоне при кислом pH гем легко отделяется от денатурированного глобина. Однако при нейтральных pH имеет место рекомбинация гема и глобина с образованием нативного гемоглобина. Таким образом, возможно восстановление нативной конформации даже та- [c.197]

    Гидрофобные взаимодействия способствуют стабилизации третичных и четвертичных структур белков, а также структуры мембран. Между прочим, аминокислотный состав изолятов и концентратов характеризуется значительным содержанием гидрофобных аминокислот, что свойственно белкам мембран или ассоциированным белкам (например, рибулозобисфосфаткарбокси-лазе/оксидазе и аденозинтрифосфатазе). При нагревании неполярные зоны частиц/направляются к водной фазе, тогда как при более низкой температуре они внутрь удаляются от нее. При посредстве этих выставленных наружу неполярных зон между частицами устанавливаются гидрофобные взаимодействия, что приводит к их более или менее полному слипанию в зеленом клеточном соке. В мембранах между срединными молекулами устанавливаются взаимодействия слипание происходит при менее высоких температурах, чем в случае с растворимыми белками, где нативная структура стабилизируется внутренними гидрофобными взаимодействиями молекул. [c.247]


    УФ-светом, рентгеновскими лучами, сильное механическое воздействие, давление, ультразвук - приводят к разрушению связей, обеспечиваюшлх сохранение четвертичной, третичной и даже вторичной структур, и, следовательно, к разрушению уникальной нативной (созданной природой) структуры белка. Этот процесс носит название денатурации белка. Нарушение нативной конформации белка может быть обратимым (если изменение структуры легко устранимо и нативная структура восстанавливается легко) и необратимым (особенно выражено при повышении температуры, лучевом воздействии, обработках сильными кислотами и щелочами). Денатурация белка сопровождается снижением гидрофильности белковых молекул, уменьшением стабильности растворов белка в изоэлектриче-ской точке, повышением реакционной способности таких функциональных групп молекулы, как -8Н, -КНо, -С6Н4ОН, -СООН и др. Большинство белковых молекул проявляют специфическую функциональную активность только в узком интервале значений pH и температуры (физиологические значения). В результате изменений указанных параметров белок теряет активность из-за денатурации. Денатурированные белки существуют в виде случайных хаотических петель и клубков, форма которых подвержена изменениям. [c.72]

    Чрезвычайно важной особенностью гидрофобных взаимодействий в водных растворах является тот факт, что эти взаимодействия, во-первых, выступают как фактор стабилизации нативных конформаций на различных уровнях организации биополимеров (вторичная, третичная и четвертичная структуры) а, во-вторых, обусловливают различные физико-химические свойства белка [51]. Впервые идея о важности контактирования неполярных цепей в стабилизации нативной структуры белка была высказана Вреслером и Талмудом еще в 40-х годах 22]. Однако впоследствии главными силами, стабилизирующими структуру белка, считали водородные связи, и лишь в 1959 г. идея об определяющей роли гидрофобных взаимодействий вновь была возрождена Кауцман-ном [33]. [c.14]

    Лучше изучен аминокислотный состав боковых цепей недеградированного белка. Потенциометрическим титрованием обнаружено присутствие 51 потенциально отрицательно заряженных групп (карбоксильные и фосфатные остатки) 5 групп, титрующихся в участке расположения имидазольной группы 22 остатка лизина и 14 гуанидиновых групп, что находится в хорошем соответствии с аналитическими данными [19]. Была исследована ионизация остатков тирозина измерением поглощения в ультрафиолетовой области при различных величинах pH. Тирозиновые остатки инсулина ионизируются при величине pH немного выше 10, в то время как тирозиновые остатки нативного яичного альбумина не ионизируются при pH 12. При pH около 12,5 происходят быстрые и необратимые изменения фенольные группы ионизируются и остаются в ионизированном состоянии даже тогда, когда pH повторно сдвигается в область ниже 12. При этом белок денатурируется. Более того, яичный альбумин, который денатурируют другими методами, содержит остатки тирозина в ионизированном состоянии при pH ниже 12 [20]. Причина этого явления, наблюдаемого как для альбумина, так и для некоторых других белков [21], пока не ясна. Водородные связи фенольных гидроксильных групп с другими группами внутри молекулы могут быть необходимы для поддержания четвертичной структуры нативного белка [22]. С другой стороны, непосредственное окружение фенольных групп внутри молекулы может быть сильно изменено денатурацией [20]. Некоторые из боковых групп нативного белка недоступны для действия химических реагентов. Как можно было ожидать, остатки тирозина легко реагируют с кетонами только после денатурирования белка [23]. Из общего числа е-аминогрупп альбумина, равного 20, только три группы реагируют с 1-фтор-2,4-динитробензолом в условиях, когда белок не денатурирован [24]. [c.10]

    Переваривав мость казеина и кератина, р-Казеин (мол. масса 23 600) крупного рогатого скота-один из белков коровьего молока-не содержит остатков цистеина и цистина. Кроме того, четвертичная структура этого белка слабо выражена его нативная конформация напоминает беспорядочный клубок. В отличие от этого а-кератины (белки, содержащиеся в волосах, шерсти, ногтях и т.д.) очень богаты остатками цистеина й цистина. К тому же эти белки обладают высокоупорядоченной вторичной и третичной структурами. Объясните, каким образом свойства этих двух групп белков отражаются на их пере-вариваемости. Почему, в частности, молоко, выпиваемое котенком, служит для него прекрасным источником аминокислот, тогда как его собственный мех не переваривается ( волосяные пробки могут даже закупорить кишечник). [c.776]

    Фермент альдолаза (мол. вес. 150 000) при обработке кислотой (pH 2,9 или ниже) диссоциирует на три цепи с молекулярным весом 50 ООО каждая, имеющих идентичную первичную структуру. При возвращении pH раствора к нейтральным значениям три полипептидиые цепи ассоциируют, образуя нативную четвертичную структуру. Известно много других примеров ассоциации одинаковых полипептидных цепей. Крайним случаем такого рода является белок вируса табачной мозаики, образующийся при ассоциации 2000 идентичных единиц, причем молекулярный вес агрегата достигается 3-10 Некоторые белки состоят из цепей нескольких типов. Например, гемоглобин, белок крови, переносящий кислород, состоит из четырех цепей, по две каждого вида. [c.382]

    В гл. V настоящего руководства показано, что вторичная, л-ретичная и четвертичная структуры нативного белка поддерживаются в значительной мере системой водородных связей и взаимодействием гидрофобных радикалов. Свойства нативного белка, в частности его биологическая активность, требуют строго определенного, уникального пространственного расположения и конфигурации полипептидных цепочек. С помощью весьма различных воздействий, например нагреванием, можно [c.183]

    Приступая к разделению белков, необходимо тщательно подобрать pH, ионную силу, температуру, электролит и носитель, поскольку от перечисленных условий зависят физико-химические и биологические свойства каждого отдельного белка. Формирование высших структур (т. е. вторичной, третачной и четвертичной), а также надмолекулярных агрегатов обусловлено ионными и гидрофобными взаимодействиями и образованием водородных связей. Эти же взаимодействия определяют и процесс разделения. Очевидно, условия хроматографии должны быть такими, чтобы выделенный продукт сохранил определенные представляющие интерес свойства, каковые, как правило, связаны ссохра-нением его нативного состояния и биологической активности. В то же время для определения физических свойств субъединиц белка часто его необходимо денатурировать и с этой целью подвергнуть жесткой обработке (например, мочевиной или гидрохлоридом гуанидина) с последующей химической модификацией (например, расщепить дисульфидные связи и блокировать сульф-гидрильные группы). Таким образом, конкретная задача определяет выбор метода разделения белков. Следует также отметить, что в процессе разделения нативных белков участвуют функциональные группы, расположенные на поверхности. Однако если белки полностью или частично денатурированы, появляются новые группы, ранее скрытые внутри макромолекулы, которые могут изменить не только силу, но и природу взаимодействия белка с сорбентом. В результате при хроматографиче- [c.104]

    Хотя в 1950-е годы еще не было известно пространственное строение на атомном уровне ни у одного белка, тем не менее в то время почти отсутствовало сомнение в том, что белковые молекулы построены из регулярных форм и главным образом из а-спиралей Полинга и Кори, обнаруженных в чистом виде у гомополипептидов. Именно на таком представлении о строении белков основана классификация белковых структур на первичную, вторичную и третичную, предложенная в 1952 г. К. Линдерстрем-Лангом [90]. Под первичной структурой понималась аминокислотная последовательность белка, т.е. его химическое строение, включая дисульфидные связи под вторичной структурой — полностью насыщенные пептидными водородными связями регулярные конформации белковой цепи как целого или ее отдельных участков. Набор взаимодействующих между собой регулярных конформаций а-спиралей, -структур и т.д. образует нативное пространственное строение белковой молекулы, названное Линдерстрем-Лангом третичной структурой. Таким образом, классификация Линдерстрем-Ланга, по существу, представляет собой формулировку принципа пространственной организации белков. Очевидно, разделение пространственной структуры белка на вторичную и третичную является условным и может иметь смысл только в том случае, если пространственное строение макромолекулы действительно представляет собой ансамбль сравнительно немногочисленных канонических форм полипептидов. В то время этот вопрос был далек от своего решения. Позднее иерархия структур Лин-дерстрем-Ланга пополнилась еще одной, четвертичной, структурой, характеризующей агрегацию белковых молекул или достаточно обособленных субъединиц. Примерами белков с четвертичной структурой могут служить гемоглобин, молекула которого состоит из четырех субъединиц, белок вируса табачной мозаики, представляющий собой систему из 200 одинаковых глобулярных молекул. [c.27]

    При анализе белков со сложной четвертичной структурой целесообразно разделять их на составляющие субъединицы или полипептиды. В случае иммуноглобулинов для диссоциации полипептидных цепей проводили избирательное восстановление межцепочечных дисульфидных связей [44, 46]. Для получения крупных, хорошо идентифицируемых фрагментов, пригодных для дальнейшего расщепления до коротких цистинсодержащих пептидов, нативные белки расщепляют бромоцианом или протеолитическими ферментами [19, 28, 42, 46, 47]. [c.168]

    Механизмы формирования третичной и четвертичной структур более сложны и противоречивы. Ясны лишь некоторые их аспекты. Ряд третичных структур белков и нуклеиновых кислот может in vitro образовываться самопроизвольно. Эти эксперименты проводятся по следующей схеме биополимер с нативной третичной структурой подвергают максимально возможной денатурации, затем денатурирующее воздействие устраняют и наблюдают восстановление структуры или функциональной активности. Насколько мож- [c.30]

    Скорость синтеза триптофана интактным ферментом на порядок выше, чем этого следовало ожидать на основании свойств изолированных субъединиц. Может быть, это обусловлено просто тем, что индол не находится в равновесии с раствором Чтобы проверить это, изучали мутантные формы фермента. Исходя из известной генетики этой системы, можно было получить белки, содержащие либо неактивные а-цепи, а 2 либо неактивные 13-цепи, OjB j. Они осуществляли только частичные реакции, катализируемые изолированными активными субъединицами. Однако скорость катализа в случае ауЗг белка была значительно выше, чем в случае Вз-субъединицы, а в случае а213 2-белка она была выше, чем для изолированных а-субъединиц. Следовательно, каждая субъединица, входящая в нативную четвертичную структуру, как-то изменяет свойства другой, так что скорость катализа возрастает. [c.33]

    Во многих случаях можно предполагать, что каждая субъединица образована одной полипептидной цепью. Если это не так, то можно подобрать условия, при которых все индивидуальные полипептидные цепи в четвертичной структуре разделяются. Для разделения обычно используют сильные денатурирующие агенты, такие как додедилсульфат натрия, и обработку восстанавливающими агентами для разрущения всех дисульфидных связей. Часто все получающиеся остатки цистеина алкилируют иодуксусной кислотой или иодацетамидом для предотвращения восстановления дисульфидных связей при последующих измерениях. Методы разделения почти всегда дают возможность определить число различных типов полипептидных цепей. Например, с помощью электрофореза часто разделяют белки, которые абсолютно идентичны, за исключением единичных зарядовых различий. Молекулярную массу каждой из денатурированных цепей (Л/ ) можно определить гидродинамическими методами, хотя и не всегда с такой же точностью, как в случае нативных белков. В качестве альтернативы используют химические методы для определения числа аминокислот, приходящегося на один Ы-конец. Вместе с аминокислотным анализом это дает возможность достаточно точно определить молекулярную массу цепи. [c.130]

    Если субъединицы состоят из полипептидных цепей нескольких типов, то после их разделения возникает вопрос какую из цепей приписать той или иной субъединице Обычно оказывается необходимым вернуться к нативной структуре и попытаться, используя более мягкие условия денатурации, разделить ее на субъединицы, сохраняющие нативную третичную структуру. Затем после очистки субъединиц определяют молекулярную массу и аминокислотный состав субъединиц каждого типа. Например, при добавлении сильного денатурирующего агента гемоглобин распадается на две а- и две 8-цепочки. В условиях мягкой денатурации образуются главным образом о/З-димеры свободные а- и 13-субъединицы встречаются очень редко. Основываясь на аминокислотном составе цепей, гемоглобин можно было бы назвать четырехсубьединичным белком, но в реакциях он ведет себя как белок, состоящий из двух субъединиц, каждая из которых представляет собой двухцепочечный а/З-димер. Весьма удобный химический метод анализа четвертичной структуры — сщивание субъединиц. В случае простых олигомеров, у которых все субъединицы тождественны, белок обрабатывают раствором с избытком молекул диметилсу-беримидата  [c.131]

    О справедливости этой модели свидетельствуют и два дополнительных экспериментальных факта. Было обнаружено несколько типов кристаллов АТСазы. В одной из форм фермент обладает осью кристаллографической симметрии третьего порядка, в другой — осью второго порядка, а в третьей, наиболее информативной форме молекула АТСазы имеет в кристалле 32(/>з)-симметрию. Это значит, что число субъединиц каждого типа в четвертичной структуре должно быть кратно щести. Химический анализ указывает на существование шести ионов в иитактной 11,38-молекуле. Каждый ион связывается с одной г-цепочкой. Эта информация наряду с данными о молекулярной массе убеждает в том, что цепочечный состав нативного белка соответствует формуле с г . [c.135]

    Для доказательства сохранения целостности двух С3-элементов в нативной структуре АТСазы С3- и с -субъединицы смешивались с регуляторными субъединицами для восстановления нативной четвертичной структуры. Если бы в процессе сборки структура С3 нарушалась, то должно было бы наблюдаться семь продуктов gr , j r , lr и т.д. Методом электрофореза их, вероятно, разделить нельзя. Во всяком случае, используя значения биномиальных коэффициентов, легко показать, что чистые с г и с г будут составлять только 1/64 часть общего количества продуктов. В действительности было обнаружено три разных продукта (в отношении 1 2 1), которые идентифицировали как с г , СзС и jrg. Отсюда следует, что отдельные Сз-элементы структуры сохраняют свою целостность в четвертичной структуре белка (рис. 2.48, . [c.135]

    Нативная конформация белка при нагревании или резком под-кислении среды может изменяться нарушается вторичная, третичная или четвертичная структура, и образуется бепорядоч-ный клубок, т. е. происходит денатурация белка, которая не сопровождается разрывом ковалентных связей. Однако изменение структуры белка связано с изменением реактивности отдельных химических группировок, от которых зависят каталитические свойства фермента. В результате может утрачиваться активность фермента. [c.40]

    Вторичная и третичная структуры белка формируются самопроизвольно и определяются первичной структурой его полипептидной цепи. Параллельно синтезу цепи происходят ее локальное свертывание (образование вторичной структуры) и специфическая агрегация свернутых участков (формирование третичной структуры). Эти процессы детерминируются химическими группами, отходящими от атомов а-углерода соответствующих остатков. Например, обработка мономерного фермента рибонуклеазы мягким восстанавливающим агентом (Р-меркап-тоэтанолом) и денатурирующим агентом (мочевиной или гуанидином см. ниже) приводит к инактивации белка и переходу его в неупорядоченную конформацию. Если медленно удалять денатурирующий агент и осуществлять постепенное реокисление, то вновь образуются 8—8-связи и практически восстанавливается ферментативная активность. Нет никаких оснований думать, что существует независимый генетический контроль за формированием уровней структурной организации белка вьние первичного, поскольку первичная структура специфически определяет и вторичную, и третичную, и четвертичную структуру (если она имеется)—т.е. конформацию белка. Нативной конформацией белка, в частности рибонуклеазы, по-видимому, является термодинамически наиболее устойчивая структура в данных условиях, т.е. при данных гидрофильных и гидрофобных свойствах среды. [c.48]

    Это любая модификация вторичной, третичной и четвертичной ее структуры, происходящая без разрыва пептидных связей. Степень нарушения нативной конформации молекул белка может быть различной, в зависимости от чего определяют обратимую и необратимую д е н а т у р а ц и ю. Денатурация белка сопровождается снижением гидрофильности белковых молекул, уменьшением стабильности белковых растворов в изоэлектрической точке, повышением реакционной способности функциональных групп молекулы (—8Н, —СООН,—ЫНг, фенольных и других), потерей биологической вктивности. Большинство молекул белка проявляет [c.13]


Смотреть страницы где упоминается термин Нативные белки, четвертичная структура: [c.508]    [c.75]    [c.68]    [c.4]    [c.170]    [c.407]   
Новые методы анализа аминокислот, пептидов и белков (1974) -- [ c.387 , c.433 ]




ПОИСК





Смотрите так же термины и статьи:

Белок белки структура

Нативный белок

Структура белка



© 2025 chem21.info Реклама на сайте