Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы требующие глубокого холода

    Существует мнение, что механизм образования дитетраэритрита более сложен и включает стадию получения акролеина [341] Специальное исследование показало, что повышению выхода дипентаэритрита способствует повыщение pH среды, а соответствующее влияние температуры в начальной концентрации ацетальдегида (при избытке формальдегида) носит экстремальный характер (максимум выхода эфира при 35—45 °С и 0,4—0,6 моль/л ацетальдегида) (рис. 62) [342]. Кроме дипентаэритрита и формиата щелочного металла, в процессе образуются также ацетали, сахароподобные и смолистые вещества. Институтом нефтехимии ЧССР разработана технологическая схема одной из последних модификаций процесса синтеза пентаэритрита (рис. 63) [340]. Сырье — ацетальдегид, формалин и суспензия гидроксида кальция (гаще-ной извести) поступают в реактор 1. Отмечается, что по условиям синтеза пентаэритрита не требуется глубокого холода. Продукты реакции направляются в нейтрализатор 2, где непревращенный гидроксид кальция нейтрализуется муравьиной кислотой. Нейтрализованная смесь, представляющая собой водный раствор пентаэритрита и других продуктов реакции, а также непревращенно-го формальдегида, метанола и солей, подается на ректификационную колонну 3. На этой колонне под давлением отгоняется метанольный раствор формальдегида. Метанол отгоняется от этой смеси на колонне 4, кубовый продукт которой возвращается на синтез. Раствор продуктов реакции из куба колонны 3 направляется в выпарной аппарат 5, где основная масса летучих продуктов,, включая воду и пентаэритрит, отгоняются под вакуумом. Упаренная жидкость поступает в центрифугу 7, в которой непрерывно выделяется кристаллический формиат кальция. Погон от упарк направляется в кристаллизатор 8 для выделения сырого пентаэритрита. Кристаллизация осуществляется методом охлаждения 204 [c.204]


    Отдельные элементарные процессы практически удалось осуществить [8—11] без катализаторов (термическое алкилирование, термополимеризацию, термическое дегидрирование, термическое деалкилирование, различные формы термического распада) и с ними (алкилирование на холоду парафиновых и ароматических углеводородов олефиновыми, полимеризацию, в том числе димеризацию и сополимеризацию, гидрирование, низкотемпературный крекинг, изомеризацию и т. п.). Но чисто термические процессы требуют высоких температур (термический синтез ароматических углеводородов) либо высоких давлений (термическая полимеризация, алкилирование и гидрирование) и в указанных условиях сопровождаются значительными потерями исходного сырья за счет глубоко идущих реакций распада (вплоть до распада на элементы) и глубокого уплотнения (до образования коксообразных веществ). [c.42]

    Регенерация абсорбента при грубой очистке газа осуществляется без подвода тепла путем многоступенчатого снижения давления в системе. При тонкой очистке газа (например, до содержания СОа 0,5% об. и менее) регенерацию осуществляют путем дросселирования давления и подвода тепла, а в некоторых случаях — для обеспечения глубокой отпарки извлекаемых компонентов — в кубовую часть отпарной колонны подают воздух, природный или другой, инертный в данном случае газ. Энергию, которая получается при дросселировании раствора, используют для производства холода и привода насосов и компрессоров. Для реализации процесса Селексол требуются значительно меньшие эксплуатационные и капитальные затраты, чем для МЭА-процесса эксплуатационные затраты снижаются на 30%, капитальные — на 70%. Технологическая схема процесса Селексол приведена на рис. 111.18. [c.152]

    Процессы, требующие глубокого холода 39 [c.39]

    Для того чтобы достичь температуры газа более низкой, чем окружающая среда, требуется отнять от газа тепло и передать окружающей среде, т. е. осуществить переход тепла от более низкого температурного уровня к более высокому. Такой переход в соответствии со вторым законом термодинамики требует затраты механической работы. Достижение глубокого холода связано с затратой энергии. Полученный холод после завершения процесса разделения газа может быть в значительной мере использован путем теплообмена уже разделенных газов с газом, поступающим на разделение. При этом полностью использовать холод невозможно в связи с наличием необратимых процессов. [c.45]


    Процессы, требующие применения глубокого холода [c.35]

    Для различных областей промышленности повышение эффективности теплообменных аппаратов — весьма серьезная проблема. Но если в ряде случаев повышение эффективности теплообмена означает в первую очередь снижение эксплуатационных и капитальных затрат, то в процессах глубокого охлаждения при недостаточной эффективности теплообменного аппарата процесс становится просто неосуществимым. Все циклы глубокого охлаждения требуют осуществления рекуперации холода в условиях очень высокого перепада температур в рекуператоре, причем с понижением температуры перепад этот увеличивается. В то же время температурный напор на теплом конце аппарата (недорекуперация) должен по условиям процесса составлять всего несколько градусов, причем должен быть тем меньше, чем ниже температурный уровень процесса. Получение малых температурных напоров при больших перепадах температуры представляет значительные трудности и решается в первую очередь путем интенсификации поверхностей теплообмена. [c.74]

    Предварительное охлаждение значительно улучшает процесс осушки, однако требует дополнительных затрат энергии, так как при этом увеличиваются потери холода в установке глубокого охлаждения. [c.124]


Смотреть страницы где упоминается термин Процессы требующие глубокого холода: [c.35]    [c.37]    [c.204]    [c.42]   
Техника высоких давлений в химии (1952) -- [ c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Холод



© 2025 chem21.info Реклама на сайте