Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время температурная зависимость

    Например, построение на основе данной химической реакции гальванического элемента и измерение его электродвижущей силы (э. д. с.) дает максимальную работу реакции и, следовательно, АО или AF. Определение же стандартных энтропий отдельных участников реакции представляет значительно более трудную задачу. В то же время температурная зависимость ДО или AF, определяемая по температурной зависимости э. д. с., представляет собой по существу изменение энтропии при реакции. [c.174]


    В то же время температурную зависимость чисел переноса нельзя объяснить на основе учета лишь сил взаимодействия ионов между собой здесь следует принимать во внимание также сольватацию ионов. Только в этом случае становится понятным наблюдаемое в ряду аналогичных соединений увеличение подвижностей и чисел переноса катиона с ростом его радиуса, поскольку сольватация проходит тем интенсивнее, чем меньше размеры иона. В результате сольватации эффективные размеры движущихся частиц малого радиуса оказываются увеличенными в большей степени и скорость их движения замедляется. Стремление чисел переноса при увеличении температуры к предельному значению, равному половине, следует связать с прогрессирующим процессом дегидратации и с выравниванием эф ктивных размеров ионов. Совпадение температурных коэффициентов электропроводности и вязкости воды также можно легко понять, если учесть, что ионы в растворе гидратированы, и следовательно, при их движении появляется трение между гидратными оболочками. Поскольку вместе с ионами перемещается вода, то величины чисел переноса (найденные, например, по изменениям концентрации электролита вблизи электродов, т. е. по методу Гитторфа) не отвечают их истинным значениям. [c.119]

    Особый интерес с точки зрения теории двойного слоя в концентрированных растворах электролитов представляет исследование границы раздела металл — расплавленная соль. В докладе Е. А. Укше (СССР) показано, что между некоторыми явлениями в разбавленных растворах и расплавах имеется удивительный параллелизм. В то же время температурная зависимость емкости [c.4]

    В двигателях, работающих на жидком топливе, стадии воспламенения и сгорания топлива предшествует стадия распыления и испарения. В распыленном (капельном) состоянии находится часть моторного масла в картере работающего поршневого двигателя. Продолжительность нахождения топлива или масла в капельном состоянии невелика, исчисляется долями секунды. Поэтому долгое время считалось, что какого-либо изменения качества топлива или масла за время его пребывания в капельном состоянии не происходит. Однако целый ряд экспериментальных данных (например, излом температурной зависимости периода задержки самовоспламенения распыленных жидких топлив) косвенно свидетельствовал о весьма значительном окислении топлив (масел) за время их нахождения в капельном состоянии. В связи с этим потребовалось провести специальные исследования окисляемости углеводородов в капельном состоянии [c.37]


    Ю. В. Аксельрод и дрЛ рекомендуют при кинетическом расчете моноэтанолами-новых абсорберов, работающих под давлением 15—30 атм, учитывать специфику механизма химических реакций при высоких степенях карбонизации и вычислять движущую силу с учетом не равновесного, а метастабильного давления СОг над раствором. Для определения его величины они исследовали температурную зависимость константы разложения карбамата в карбонизованных растворах. Показано, что время пребывания в промышленных абсорберах недостаточно для достижения равновесия в растворе, причем расчетные значения метастабильного давления более чем на порядок превышают равновесные значения. Доп. пер. [c.249]

    Как известно, устойчивость гидрофильных коллоидов обычно выше предсказываемой теорией ДЛФО, учитывающей молекулярное протяжение и электростатическое отталкивание. Однако лишь в последнее время удалось установить прямую связь между устойчивостью гидрофильных коллоидов и толщиной граничных слоев воды, оцененной независимыми методами. Для дисперсий кремнезема и алмаза экспериментально прослеживается влияние на их устойчивость pH дисперсионной среды и температуры. Причиной этого влияния является изменение дальнодействия структурных сил отталкивания, стабилизирующих дисперсию. Стабилизация дисперсий при низких pH связана с увеличением числа поверхностных ОН-групп, способных к образованию водородных связей с молекулами воды, что ведет к росту сил структурного отталкивания. Повышение температуры вызывает ослабление сетки направленных водородных связей в воде, что уменьшает дальнодействие структурных сил и приводит к снижению устойчивости дисперсий. Наблюдающаяся обратимость температурной зависимости устойчивости свидетельствует об обратимости структурной перестройки граничных слоев. [c.168]

    Первые попытки использовать данные по температурной зависимости химических сдвигов в жидкой воде для идентификации какой-либо из многочисленных моделей структуры воды не привели к успешному результату полученные данные можно одинаково хорошо объяснить с помощью совершенно различных моделей— и непрерывных и дискретных [581]. В ряде работ из данных по временам релаксации на ядрах Н, Н(О) и Ю с помощью соотношений [582] вычислены времена корреляции [c.230]

    Влияние температуры на рассматриваемые функции может быть определено на основе данных о температурной зависимости теплоемкости и интегрировании уравнений (1,1) — (1,4). Зависимость теплоемкости от температуры в настоящее время принято выражать больщей частью уравнениями вида [c.59]

    КОЙ области температур дает уже в настоящее время возможность рассчитывать химические равновесия, не обращаясь к уравнениям, выражающим температурную зависимость теплоемкости, и уравнению (11,31). [c.69]

    Метод отношений менее удобен для проведения расчетов в аналитической форме, так как требует вычисления каждой из величин в отдельности, в то время как метод разностей дает возможность определять алгебраическую сумму выражений температурной зависимости рассматриваемой величины для индивидуальных веществ и окончательный расчет вести для всех температур по одному уравнению, содержащему всего 3—4 члена. С другой стороны, по-видимому, допущений о постоянстве отношений менее чувствительно к недостаточной однотипности сравниваемых реакций. [c.146]

    К сожалению, для очень важной категории реакций — реакций образования из элементов (из простых веществ или свободных атомов) — применение описанных закономерностей при высоких температурах часто бывает существенно ограниченно. Расчет параметров реакций образования из простых веществ и определение их температурных зависимостей в широкой области температур большей частью сильно осложняются вследствие фазовых переходов, которые претерпевают простые вещества (полиморфные превращения, плавление, испарение), и частичной диссоциации их на атомы при высоких температурах. Поэтому целесообразнее рассматривать атомарные теплоты образования (или теплоты атомизации), атомарные энтропии образования (или энтропии атомизации) и другие параметры реакций образования вещества из свободных атомов. В настоящее время расчет этих величин не представляет затруднений, так как почти для всех элементов имеются дан-ные о значениях термодинамических функций их в состоянии одноатомного газа при разных температурах до 3000 К, и для некоторых элементов до 6000, 8000 и 20 ООО К- [c.183]

    К, рассчитать их для других температур, на основе метода однотипных реакций или других методов сравнения, используя табличные данные о температурной зависимости рассматриваемой функции для другого вещества, сходного с первым. Таблицы составлены в основном по материалам и по данным, опубликованным в литературе последних лет. Так как имеющийся в настоящее время фонд данных очень велик, здесь материал представлен в сильно сокращенном виде. Сокращение было проведено и по числу веществ, и по плотности температурной сетки, и по виду рассматриваемых функций. [c.312]


    Здесь ДЯ и AS — изменения энтальпии и энтропии, которые, согласно (52.2), соответствуют уравнению химической реакции. Таким образом измерением электродвижущей силы и ее температурной зависимости можно определить величины ДС, ДЯ и Д5 для реакции (52.2). Так как все три величины являются функциями состояния, то их значения ие зависят от того, протекает ли реакция (при постоянной температуре и постоянном давлении) необратимо (случай б".) или обратимо (случай в".). Напротив, теплота, принятая системой (которая зависит от пути в пространстве состояния), при необратимом протекании равна ДЯ, при обратимом процессе равна ГД5, в то время как в последнем случае, согласно (52.31), ДЯ равна сумме подведенной теплоты и электрической работы, подведенной потенциометром к системе. Термодинамическое исследование гетерогенной реакции с помощью обратимых гальванических элементов играет также важную роль при экспериментальной проверке теплового закона Нернста ( 38). [c.270]

    Температурная зависимость вязкости минеральных масел находится в очень близкой связи с их химическим составом. Выяснено, что вязкость масел, полученных нз нефтей асфальтового основания, содержащих значительное количество смолисто-ароматических компонентов, весьма резко меняется от термического воздействия, в то время как масла из нефтей парафинового основания обладают наиболее пологой кривой вязкости. [c.265]

    Развитие методики экспериментов в ударных трубах позволило значительно расширить пределы исследования температурной зависимости констант. Результаты опытов по измерению к Т) обычно выражают в виде экспоненциальной функции (1.10) или степенной функции к — В1Т п > 0). Более тщательные измерения показали, что существует разница в параметрах Е и я, полученных при низких и высоких температурах [200, 201]. Так, Рассел [200] пришел к выводу, что в формуле, описывающей рекомбинацию атомов I и Вг с участием инертных газов при высоких температурах, л 1,5, в то время как при низких температурах экспериментальные данные лучше описываются той же формулой, но с /г = 3. [c.120]

    Температурная зависимость константы скорости, вычисленной по формуле (12.2), для реакции рекомбинации атомов I и Вг с участием Аг (рис. 12.1 б) довольно хорошо воспроизводит экспериментальную зависимость константы скорости от температуры [199, 205]. В то же время сравнение вычисленной теоретически равновесной константы скорости рекомбинации й .равн с экспериментальной [c.121]

    При одном и том же содержании углеродных атомов в молекуле наиболее высокой температурой плавления обладают нормальные алканы, где дисперсионному взаимодействию подвергаются все углеродные атомы соседних молекул. С разветвлением структуры молекул такая возможность вследствие их иной ориентации понижается, что объясняет более низкую температуру кристаллизации. В твердом состоянии молекула алкана расположена упорядоченно, образуя кристаллы различной структуры, преимущественно большие агрегаты достаточно гибких кристаллов. Процесс кристаллизации складывается из двух стадий стадия образования центров кристаллизации (или зародышей) и стадия роста этих центров. Вторая стадия кристаллизации — многоступенчатый процесс, который по различным причинам (например, вследствие возникновения механических напряжений) может останавливаться на любой промежуточной стадии. Монокристаллы образуются только в особых условиях. Обе стадии кристаллизации сильно зависят от температуры. Понижение температуры благоприятствует образованию зародышей кристаллизации, но в то же время уменьшает молекулярную подвижность, а вместе с ней и скорость роста кристаллов. Поэтому температурная зависимость скорости кристаллизации проходит через максимум. Большинство алканов имеет несколько аллотропических модификаций, кристаллизуясь в гексагональной, триклинной, моноклинной и орторомбической формах. Некоторые [c.190]

    Различие между Гс и Гм отчетливо проявляется на температурной зависимости динамического модуля Юнга (рис. 2.6). Ниже Гс полимер находится в стеклообразном состоянии и температурная зависимость lg слабо выражена, как и у любого твердого тела. Выше Гс наблюдается более резкая зависимость логарифма модуля упругости от температуры в связи с тем, что в структурно-жид-ком состоянии структура полимера непрерывно изменяется с температурой. При дальнейшем увеличении температуры в области, где время релаксации снижается до величин, сравнимых с периодом колебаний, в полимерах проявляется высокоэластическая деформация. Амплитуда деформации полимера с увеличением температуры возрастает до тех пор, пока не достигнет предельного значения, а модуль — весьма низкого значения (например, для полимеров модуль одноосного сжатия в стеклообразном состоянии Ео примерно в 10 —10 раз больше, чем соответствующий модуль в высокоэластическом состоянии). [c.43]

    С помощью формулы (8.11) из значений ЛЯ1/2 может быть найдено время корреляции Тс. Эти данные целесообразно представить в логарифмическом масштабе как функцию обратной температуры. Для политрифторхлорэтилена (имеющего резонирующее ядро F) температурные зависимости Тс (рис. 8.5) выше и ниже точки излома (70° С) описываются соотношением вида Тс=То ехр [ //(/ Т)], [c.224]

    Чаще всего при исследовании строения, структуры и молекулярного движения полимеров, находящихся в твердо.. агрегатном состоянии, применяются методы ядерного магнитного резонанса двух видов импульсный и щироких линий. С помощью первого метода определяются времена спин-решеточной и спин-спиновой релаксации, а второй позволяет получать значения ширины резонансной линии и ее второго момента. По проявляющимся на температурных зависимостях этих величин аномалиям можно судить об изменении подвижности отдельных атомных групп и более крупных фрагментов полимерных цепей, а следовательно, и об особенностях строения полимеров. [c.231]

    Характер температурных зависимостей объема и коэффициента объемного расширения полистирола (ПС) обусловливается релаксационными процессами при структурном стекловании и размягчении образцов (рис. 10.15 и 10.16). Для отожженного образца ПС при нагревании его со скоростью 0,5 К/мин в области размягчения наблюдается аномальное увеличение объема, чему соответствует пик на кривой коэффициента расширения. На изменение объема полимера оказывают влияние время и температура выдержки образцов вблизи области перехода. Чем больше скорость охлаждения образцов, тем выше их Тс. При длительном отжиге ПС при Т<7 с наблюдается релаксация структуры и длины образцов стремятся к своему равновесному значению. При этом чем ниже температура, тем медленнее протекает процесс релаксации струк- [c.266]

    Уравнение (225) представляет собой закон Кирхгофа в интегральной форме. Очевидно, что температурная зависимость энтальпии для газовых реакций, в уравнении реакции которых по обе стороны знака равенства находятся одинаковые молярные количества газов, очень невелика, так как молярная теплоемкость газов почти не зависит от природы газа. В то же время для реакций, в которых образуется или расходуется газообразное вещество, можно ожидать существенную зависимость энтальпии от температуры. [c.229]

    Невыполнение закона равнораспределения энергии на каждую степень свободы в свое время явилось больщой неожиданностью и привело к необходимости создания квантовой теории температурной зависимости теплоемкости. [c.70]

    В теории строения вещества в настоящее время достигнуты большие успехи и, как выше уже отмечалось, некоторые свойства индивидуального вещества можно предсказать, если известны параметры взаимодействия его молекул между собой, и, наоборот, эти параметры можно определить исходя из тех же свойств, если последние известны. Вследствие обычно имеющего место отличия характеристик реального межмолекулярного взаимодействия от предсказываемых моделью Леннарда — Джонса определяемые значения его параметров будут зависеть от выбранного свойства. Совершенно очевидно, что точность расчета величины а при этом должна быть выше, когда параметры межмолекулярного взаимодействия определяются исходя из свойств, наиболее близких к коэффициенту разделения по физическому смыслу — давлению насыщенного пара Р рассматриваемого компонента и его плотности рж в жидком состоянии на линии насыщения. Соответствующие температурные зависимости, полученные на основании расчетов методом Монте-Карло можно представить в виде следующих интерполяционных формул  [c.38]

    Неравновесная кинетика не может основываться на наиболее общем и прямом подходе, опирающемся на решение полной системы кинетических уравнений для заселенности отдельных кванто ых состояний с использованием сечений элементарных процессов. Гораздо более продуктивен упрощенный подход, использующий основные макроскопические характеристики реагирующей системы — характерное время химической реакции и характерное время релаксации Неравновесные эффекты становятся все более существенными по мере увеличения отношения Тр(.л/Тх . Поскольку большинство химических реакций имеет значительно более крутую температурную зависимость, чем релаксационные процессы, то ясно, что сильные отклонения от равновесия наиболее вероятны в высокотемпературных реакциях. [c.64]

    Аналогичные выражения справедливы для теплоемкости п коэффициента теплового расширения. Структурные величины обычно сильно зависят от температуры. При комнатных (и более низких) температурах структурные вклады аномально велики. Так, в случае сжимаемости KstrlKoa ., b [170], в то время как для большинства других жидкостей это отношение меньше единицы [171]. В конечном счете все аномалии воды обусловлены лабильностью структуры воды в отношении воздействия теплом или давлением. В ряду наиболее характерных аномалий воды — резко нелинейная температурная зависимость объема, сжимаемости и теплоемкости с положительной второй производной. Это проиллюстрировано на рис. 3.7 на примере объема и сжимаемости воды и, для сравнения, сжимаемости нормальных жидкостей — спиртов и ртути [172—175]. [c.52]

    Время температурного воздействия на исходные материалы и полученные продукты при осуществлении химических термотехнологических процессов находится в зависимости от следующих факторов 1) химического состава и диапазона его изменения 2) физических и химических свойств 3) характеристик печной среды (катализаторы) 4) давления 5) требуемой степени превращения в заданный продукт 6) заданного качества полученных продуктов 7) гранулометрического состава исходных метериалов 8) требуемой прочности полученного продукта 9) способов подавления сопутствующих процессов 10) конструкции печи и т. д. [c.117]

    При очень низких температурах, которые стали доступными в настоящее время (см. примечание на стр. 111), составляющая теплоемкости Ср, обусловленная энергией колебания атомов и ионов, образующих кристаллическую рещетку, становится очень малой — большей частью не превышает 10 —10 кал/ град г-атом). В этих условиях в металлических кристаллах выявляется составляющая теплоемкости, обусловленная движением электронов. Эти две составляющие могут быть определены раздельно благодаря сильному различию их зависимости от температуры. Первая из них Ср, реш возрастает с повышением температуры прямо пропорционально третьей степени температуры, а вторая Ср,эц (кроме сверхпроводников в области сверхпроводимости) — пропорциональна первой степени ее. В соответствии с этим температурная зависимость суммарной теплоемкости может быть представлена в форме [c.154]

    Температурная зависимость В становится понятной на основе простой физической картины. При низких температурах столкновение двух молекул в значительной степени определяется даль-нодействующими межмолекулярными силами притяжения и такие пары могут проводить значительное время в окрестности друг друга. По существу это не что иное, как форма молекулярной ассоциации, и существование таких короткоживущих димеров снижает давление ниже давления идеального газа, что соответствует отрицательному значению В. При высоких температурах столкновения молекул происходят гораздо энергичнее и лишь незначительно зависят от слабых сил притяжения. Вместо этого преобладают короткодействующие силы отталкивания. В свою очередь это приводит к тому, что начинает сказываться собственный объем молекул, и давление становится выше давления идеального газа, что соответствует положительному В. При еще более высоких температурах В уменьшается снова в связи с тем, что при сильных взаимодействиях между молекулами оболочки последних деформируются и собственный объем молекул уменьшается. Таким образом, отрицательная ветвь второго вириального коэффициента соответствует силам притяжения, а положительная — силам отталкивания. Точка пересечения (температура Бойля) соответствует значению кТ, примерно в 3—5 раз превышающему средний максимум энергии притяжения между парой молекул. Обобщение этой простой [c.20]

    Выражение (IV, 47) идентично неравенству (II, 47), которое было определено ранее как достаточное условие единственности стационарного состояния и интерпретировалось как температурная зависимость тепловыделения и теплоотвода. Условие единственности касается всех возможных температур, представляющих интерес, в то время как условие устойчивости должно относиться только к стационарному состоянию. В результате проточный реактор с перемешиванием может иметь единственное стационарное состояние, которое неустойчиво [если, например, неравенство (IV, 47) справедливо при всех температурах, но условие (IV, 40а) нарушается при стационарном состоянии], или устойчивое стационарное состояние, которое не будет единственным стационарным состоянием [если неравенство (IV, 47) удовлетворяется при стационарном состоянии, но нарушается при других температурных условиях]. Представление о необходимости теплового баланса более раннее, чем произведенный здесь анализ устойчивости стационарного состояния, и восходит по крайней мере к Ван Хирдену (1953 г.). [c.86]

    Различие в химических свойствах фракций смолистых веществ проявляется и в характере температурной зависимости диэлектрической проницаемости растворов последних. Наблюдается следующая закономерность чем более полярным растворителем извлечена из силикагеля данная фракция смолы, тем при меньших концентрациях раствора на кривых e=f(t) появляется максимум, а в близких концентрациях максимум тем значительнее и тем больше смещен в область высоких температур. Так, например, для раствора фракции смолы ромашкинской нефти, извлеченной ацетоном, наблюдается максимум на кривой е=/( ) уже при концентрации смолы в растворе, равной 14%, причем восходящая ветвь кривой (Ае/Л >0) доходит до +7°, в то время как для фракции смолы этой же нефти, но извлеченной четыреххлористым углеродом, максимум на соответствующей кривой появляется при концентрации смолы, равной 33%, а восходящая ветвь кривой кончается уже при —5°. Сопоставление этих данных с результатами изучения химического состава и свойств соответствующих фракций ясно показывает, что увеличение склонности к ассоциации смолистых веществ в растворе связано с увеличением количества полярных групп и с повышением суммарного содержания в смоле гетероатомов (З+К+О). Чем выше содержание гетеропроизводных органических соединений, тем сильнее и в более широком интервале происходит повышение диэлектрической проницаемости с ростом температуры, обусловленное диссоциацией молекулярных ассоциатов. Эти выводы носят пока качественный характер, поскольку количественные соотношения могут быть установлены только при учете фактора вязкости. [c.187]

    Температуры структурного стеклования Тс и механического стеклования Тм. с независимы между собой, так как первая определяется скоростью охлаждения, а вторая — временным режимом механического воздействия (периода действия силы 0, частоты упругих колебаний v). Различие между Тс и Гм.с четко наблюдалось, например, при изучении температурной зависимости динамического модуля сдвига G или модуля одноосного сжатия Е. Характерная зависимость lg от температуры для полимера 11риведена на рис. П. 11. Ниже Гс полимер находится в стеклообразном состоянии и температурная зависимость Igf слабо выражена, как и у любого твердого тела вообще. Выше Гс логарифм модуля упругости изменяется с температурой несколько сильнее в связи С тем, что в структурно-жидком состоянии структура полимера изменяется с изменением температуры. При дальнейшем увеличении температуры, когда время релаксации снижается до величин, сравнимых с периодом колебаний, начинает возникать высокоэла-бтичёская деформация. С дальнейшим увеличением температуры амплитуда деформации полимера возрастает до предельного значения, а модуль упругости падает до весьма низкого значения (модуля высокоэластичности). Для полимеров модуль одноосного (жатия в стеклообразном состоянии Ео примерно в 10 —10 раз больше, чем соответствующий модуль Еж в высокоэластическом состоянии. [c.96]

    Так как в жидкостях молекулярная перегруппировка представляет собой активационный процесс, время молекулярной релаксации приближенно выражается уравнением т = тоехр[ //( Г)], где (У —энергия активации перегруппировки, вызванная наличием энергетических структурных барьеров, зависящих от температуры Т и давления р. Для жидкостей температурная зависимость энергии активации, по Шишкину [2.2], выражается следующей формулой  [c.36]

    Константы равновесия в том и другом случае отличаются незначительно (в 2—4 раза). В то же время при переходе от профлавина к родамину 6Q процесс комплексообразования красителя с активным центром замедляется почти в 10 paat Структуры молекул этих лигандов различаются в основном лишь тем, что молекула родамина 6Q содержит дополнительное бензольное кольцо. Как показало изучение температурной зависимости кинетики комплексообразования, энергия активации этого процесса порядка 17 ккал/моль (71,4 кДж/моль). С другой, стороны, известна, что энергия активации процессов, контролируемых диффузией, не превышает, как правило, 5 ккал/моль (21 кДж/моль) [62, 63]. Поэтому следует заключить, что образование комплекса химотрипсина с более объемной молекулой родамина 6G возможно лишь в результате конформационных изменений в молекуле фермента. Такой механизм (1.8) комплексообразования органических молекул с белками, по-видимому, весьма распространен. [c.31]

    Механизм ускорения удалось вскрыть при исследовании температурной зависимости ферментативной реакции [70, 71]. На рис. 35 приведены активационные параметры стадии гидролиза для двух рядов ацилферментов (уравнение 4.6). Из этих данных видно,, что реакции гидролиза ацилхимотрипсинов, содержащих в субстратном остатке ту же самую группу К, протекают с почти одинаковой энтальпией активации. В то же время наличие в субстратном остатке а-ацетиламидной Труппы приводит к выигрышу в энтропии активации порядка 10—12 кал/моль/град (42—50,4 Дж/моль/град). Этот результат показывает, что активный центр выступает в роли энтропийной ловушки субстрата. Иными словами, энтропийный характер ускорения реакции, наблюдаемого в случае специфических субстратов, подтверждает представление о том, что сорбционное взаимодействие между а-ацил- [c.137]

    Радиационная химия изучает хи.мнческие превращения, происходящие при воздействии ионизирующих излучений. Действие всех видов радиационного излучения п конечно.м счете сводится к взаимодействию заряженных частиц с электронами вещества, поэтому химический эффект действия различных излучений в значительной мере одинаков. Наиболее существенное отличие радиационно-химических реакций от фотохимических связано с неизбирагельным характером поглощения ионизирующего излучения. В то время как свет поглощается, если его частота соответствует частоте поглощения молекулы, энергия радиации поглощается всеми молекулами, вызывая акты ионизации и переводя молекулы в возбужденное состояние. Сохраняя все преимущества фотохимического инициировании (слабая температурная зависимость, отсутствие загрязнений в реакционной среде и др.), радиационное инициирование не накладывает каких-либо особых требований на реакционную среду. Эта среда может быть многокомпонентной, непрозрачной, находиться в разных агрегатных состояниях, кроме того, конструкция реактора может быть произвольной. [c.261]


Смотреть страницы где упоминается термин Время температурная зависимость: [c.46]    [c.207]    [c.104]    [c.82]    [c.170]    [c.160]    [c.438]    [c.215]    [c.314]    [c.60]    [c.84]    [c.207]   
Физика полимеров (1990) -- [ c.246 ]

Руководство по газовой хроматографии Часть 2 (1988) -- [ c.54 ]




ПОИСК







© 2025 chem21.info Реклама на сайте