Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галоиды действие их на при крекинге

    Другой не менее важный способ переработки газов крекинга заключается в действии на них галоидов (хлора) и галоидных кислот (хлористого водорода и хлорноватистой кислоты). Из этилена этим путем получают хлористый этил, дихлорэтан и хлор-гидрин этилена, широко применяемые для органического синтеза в промышленности. Так, например, этиленхлоргидрин путем гидратации легко может быть превращен в этиленгликоль, получивший в настоящее время широкое применение в целом ряде отраслей народного хозяйства в пищевой промышленности — как [c.316]


    В химии известна обширная группа реакций, к которым не применимы обычные законы кинетики (например, закон действующих масс). К ним относятся ряд фотохимических реакций, протекающих под действием квантов света, газовые реакции горения и окисления, процессы введения галоидов в состав органических молекул, реакции крекинга, полимеризации, окисление МагЗОз, разложение перекиси водорода в растворах и многие другие. [c.129]

    Это определенное противоречие не содействует пониманию активирующего действия хлористого водорода. Сверх этого, во многих примерах указывается, что дан е в процессах конденсации, осуществляемых галоидными алкилами или другими хлорированными соединениями, присутствие следов влаги в хлористом алюминии производит ускоряющее действие. Даже больше того, было показано,что в присутствии хлористого алюминия, освобожденного от хлористого водорода сплавлением под давлением с алюминиевой пылью [21], не происходит крекинга парафиновых углеводородов. Из этого мы можем вывести заключение, что хлористый водород, присутствующий как таковой или образующийся в результате реакции воды с катализатором, обладает активирующим влиянием не только на реакции, включающие олефины, но также па реакции конденсации с алкильными галоидами и на крекинг. Однако важное значение хлористого водорода для реакций Фриделя—Крафтса может быть определено в общем только опытами с абсолютно безводным хлористым алюминием так как это соединение жадно поглощает влагу, то сомнительно, был ли кто-либо и когда-либо способен приготовить хлористый алюминий в совершенно безводном состоянии. В нашей лаборатории мы безрезультатно провели повторные попытки приготовить действительно безводный хлористый алюминий. Таким образом, трудно избежать загрязнения влагой от этого источника. Хотя реакции с хлористым алюминием обычно рассматриваются как протекающие в безводных условиях, сомнительно, чтобы сами реагирующие вещества были когда-либо совершенно свободными от [c.83]

    При применении катализаторов типа Фридель—Крафтса изомеризация парафинов, за исключением бутана, обычно сопровождается побочными реакциями, включающими и разрыв связи С—С. В процессе реакции синтезируются соединения, кипящие либо выше, либо ниже первоначального углеводорода. Реакции перераспределения, проходящие особенно с пентанами или более высокими парафинами, вызываются, очевидно, крекингом изо-парафиновых молекул, которые галоидом алюминия пе активируются [409]. По аналогии с реакциями, происходящими в авто-деструктивном алкилировапии, описываемый процесс является все-таки соединением деалкилирования (крекинг) и алкилирования [410], которые дают изопарафины более высокого либо более низкого молекулярного веса, чем первоначальный алкан. Возможно, проведением изомеризации под давлением водорода [411 — 413], в присутствии изобутана [412, 414], ароматики [412], нафтеновых углеводородов [412, 415—418] или гетероциклических углеводородов, таких как тиофен [419], можно свести к минимуму боковые реакции для нентанов и гексанов, но не для гептанов и более высоких парафинов. Устранение побочных реакций обычно сопровождается замедлением изомеризации, однако, прибавление олефинов уменьшает предохраняющее действие вышеприведенных агентов. Реакции изомеризации проходят через индукционный период в течение этого времени проходят незначительные реакции перераспределения [420, 421]. [c.117]


    Другой способ превращения смесей углеводородов (полученных деструктивной гидрогенизацией каменного угля, крекингом нефтяных продуктов или низкотемпературной сухой перегонкой каменного угля) в продукты, имеющие более высокую температуру ккпения, состоит в том, что эти углеводороды подвергают действию галоидов, веществ с подвижным атомом галоида, или галоидных соединений элементов от 111 до VIII группы периодической системы . Процесс этот осуществляется обычно при температуре ниже 100°. В качестве примера приводится такой случай 10 ч. среднего масла с темп. кип. 200— 270° обрабатывают 1—2 ч. хлоропроизводных метанового ряда и 1 ч. хлористого алюминия при температуре ниже 40° е таком растворителе, как например бензол. happell разработал способ, по которому углеводородные масла, содержащие нафтены, могут быть подвергнуты конденсации с продуктами хлорирования газообразных углеводородов в присутствии хлористого алюминия. Продукты поступают во вторую зону реакции, где их обрабатывают дополнительным количеством хлористого алюминия при более высокой температуре. При этом имет место, по словам автора, разложение с образованием бензина и высококипящего масла. Из твердого парафина или из углеводородов, средний молекулярный вес которых колеблется от 170 до- 250, в присутствии хлористого алюминия и таких агентов, как хлор, кислород или сера, может быть получено вязкое смазочное масло (с выходом в 50—60%) [c.226]


Смотреть страницы где упоминается термин Галоиды действие их на при крекинге: [c.242]    [c.531]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.123 ]




ПОИСК





Смотрите так же термины и статьи:

Галоиды

Галоиды действие на ион SOg

галоидо



© 2025 chem21.info Реклама на сайте