Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции перераспределения водорода

    Константы равновесия изомеризации, как скелетной, так и структурной, также слабо меняются с температурой (для них малы не только теплоты, но и изменения энтропии), и это приводит к относительной стабильности состава равновесной смеси в довольно щироком диапазоне температур. Содержание изопрена в равновесной смеси трех изомеров при 300 К составляет 37%, а при 700 К — 30%. Если в равновесной смеси при изомеризации присутствуют только один структурный изомер и ИЗ "-прен (это гипотетический случай), содержание последнего может быть повышено до 50—59%. Таким образом, изомеризация пипериленов в изопрен в проточном реакторе затронет не больше трети сырья и потребует значительной рециркуляции. Учитывая, что изомеризация скелета диенов сопровождается интенсивными побочными реакциями перераспределения водорода, представляется более целесообразным (по технологическим, а не термодинамическим соображениям) превращать пиперилены в н-пентан или н-пентен, изомеризация которых реализуется в промышленности. В ряде работ, в том числе и нашей [39], предложены каталитические системы для гидрирования пипериленов. [c.214]


    Стабильность карбкатионов определяет степень их участия в дальнейших реакциях. Например, высокая стабильность третичных карбениевых ионов обусловливает высокий выход изо-парафиновых углеводородов. Реакция перераспределения водорода (Н-переноса) наряду с расщеплением и изомеризацией в значительной мере определяет качество продуктов крекинга. [c.107]

    Кроме того, в процессе превращения ароматических углеводородов существенную роль играют реакции перераспределения водорода и конденсации. При крекинге ароматических углеводородов кокса образуется значительно больше, чем при крекинге парафиновых или нафтеновых углеводородов. [c.48]

    Реакции сопряженного гидрирования играют исключительно важную роль в биохимических процессах (окислительно-восстановительные, или редокс-процессы). Катализированные металлами группы Р1 реакции перераспределения водорода в органических молекулах являются моделями биохимических процессов, в которых катализаторами служат ферменты. Н. Д. Зелинский в одной из статей писал В живой природе имеется широкое поле течения и развития каталитических процессов. В клетках живого вещества рассеяны ускорители (катализаторы) с характерной специфичностью их действия. Особенно большую роль играют восстановительно-окислительные реакции в присутствии катализаторов, вырабатываемых живым веществом, каковыми и являются ферменты и энзимы. Гармоническое сочетание совокупности действия таких катализаторов представляет одно из главных условий жизни животного и растительного организма [10]. [c.447]

    Активность катализатора зависит от его физико-химических свойств строения, химического состава и т. д. Свойства синтетического катализатора зависят не только от качества применяемого для его изготовления сырья, но и от способа производства катализатора. Для естественных катализаторов состав исходной породы также оказывает существенное влияние на каталитическую активность. Некоторые глины (каолин) обладают высокой каталитической активностью к реакциям перераспределения водорода. Активность других глин значительно повышается после их активации кислотами. [c.51]

    Реакции перераспределения водорода, которые могут протекать и между разными по структуре молекулами, играют важную роль при каталитическом крекинге, а также в некоторых биологических окислительно-восстановительных процессах. [c.234]

    Крекинг в присутствии алюмосиликатных катализаторов протекает при температурах порядка 440 — 480° С. При этом имеет место передача водорода от адсорбированных на поверхности катализатора тяжелых молекул к реагирующим молекулам, т. е. наблюдаются реакции перераспределения водорода. [c.10]


    ЦСК интенсифицирует реакции перераспределения водорода, протекающие по схеме олефины + нафтены изо-парафины + ароматические углеводороды. Образующиеся при этом изо-парафиновые и ароматические углеводороды менее реакционноспособны по сравнению с олефиновыми и нафтеновыми углеводородами. Этим и объясняется уменьшение доли вторичных реакций крекинга бензина на цеолитах. Способность ЦСК ускорять реакцию Н-переноса обусловлена высоким адсорбционным потенциалом пор цеолита и большей концентрацией в нем кислотных центров по сравнению с АСК. Возможно также наличие в ЦСК специфических кислотных центров, интенсифицирующих реакции Н-переноса. [c.106]

    Алюмосиликатные катализаторы характеризуются высокоразвитой пористостью. На активных центрах внутренней поверхности и протекают реакции каталитического крекинга. В результате реакций перераспределения водорода между продуктами разложения и продуктами уплотнения последние отлагаются в виде кокса на внутренней поверхности катализатора, активность которого падает. Регенерируют катализатор, подавая воздух на горячий отработанный катализатор в результате отложения кокса сгорают, а регенерированный катализатор возвращается в реактор. [c.48]

    При этом происходит насыш,ение кратных связей за счет реакции перераспределения водорода [58]. В результате образуются насыш,енные углеводороды и обедненные водородом смолистые отложения на катализаторе. Параллельно образуются также ароматические и нафтеноароматические углеводороды. Кроме того, протекают реакции, связанные с изменением строения образующихся вначале бициклических углеводородов, как, например  [c.377]

    Ниже при рассмотрении термодинамики конкретных реакций использованы данные как ставших классическими работ, так и новых исследований и расчетов. Рассмотрение термодинамики высокомолекулярной полимеризации объединено с анализом сходного процесса — высокомолекулярной поликонденсации. В раздел, посвященный диспропорционированию, включены данные о реакциях перераспределения водорода и углерода (диспропорционирование олефинов, коксообразование). [c.172]

    ТО, ра делив их друг на друга, получаем константу равновесия Кр дл5 реакции перераспределения водорода  [c.463]

    Примерно пропорционально уменьшению удельной поверхности катализатора снижается его активность. При этом снижается, по-видимому, только число активных центров, свойства их не меняются. Поэтому результаты крекинга изменяются так же, как и при увеличении скорости подачи сырья на данном катализаторе. В табл. 7.3 приведены данные о крекинге в фиксированных условиях заданного сырья на свежем и дезактивированных в разной степени термопаровой обработкой аморфных катализаторах. Снижение их активности приводит не только к уменьшению глубины крекинга и выхода бензина, но и к существенному изменению химического состава бензина. В результате снижения роли реакции перераспределения водорода уменьшается содержание парафиновых углеводородов и растет содержание олефиновых. [c.216]

    В процессе изучения влияния условий старения на активность катализатора было установлено, что при этом изменяется и его селективность — на образцах катализаторов, после их термической и термопаровой обработки, при крекинге образуются более непредельные продукты, выход кокса и газа уменьшается в большей степени, чем выход бензина. В работе [62] такое изменение селективности объясняется наличием на поверхности катализатора по крайней мере двух видов активных центров. Одни из них ответственны за реакции крекинга, и в процессе термической или термопаровой обработки их число на единицу поверхности катализатора не меняется. Другие катализируют реакцию перераспределения водорода, и при спекании катализатора их свойства и число активных центров на единицу поверхности существенно изменяются. [c.42]

    Улучшение химического состава продуктов каталитического крекинга достигается в результате реакций изомеризации угл е-водородного скелета, дегидрирования нафтеновых углеводородов, реакций перераспределения водорода и др. Поскольку эти реакции предпочтительно протекают на чистых поверхностях катализатора, длительность работы катализатора будет оказывать влияние на качество получаемых продуктов. Наибольшие выходы пропан-про-пиленовой и бутан-бутиленовой фракций, изобутана и изопентана наблюдаются при длительности работы аморфного катализатора до 15 мин (рис. 47). По мере увеличения длительности использования катализатора выход этих компонентов снижается. При изменении длительности крекинга с 5 до 15 мин выход сухого газа снижается незначительно, но заметно уменьшается количество образующихся пропан-пропиленовой и бутан-бутиленовой фракций. Это приводит к повышению содержания в получаемом газе водорода, метана и этан-этиленовых углеводородов. [c.108]


    Реакции с переносом водорода. Кроме перечисленных, известны другие реакции гидрирования ненасыщенных групп —N=N—, =С=Ы—, —С=М, —СОЫНз и т. д. К особой категории следует отнести реакции перераспределения водорода в этом случае одна молекула отдает водород, а другая присоединяет его. [c.234]

    Наряду с реакциями полимеризации и разложения идет циклизация и дегидрогенизация олефинов. Наличие насыщенных углеводородов в продуктах крекинга олефинов показывает, что при распаде не только образуются два олефина меньшего молекулярного веса, но протекает реакция перераспределения водорода с образованием системы парафин — диолефин. Последний, будучи весьма неустойчивым, вступает в реакции конденсации с олефинами. [c.29]

    Наибольшее снижение выхода бензина и светлых нефтепродуктов наблюдалось при добавлении первых порций азотистых оснований (0,5 мас.%, что соответствует 0,117 мас.% азота). При этом качество бензина ухудшалось — увеличивалась его непредельность, что свидетельствовало о снижении активности катализатора в реакциях перераспределения водорода. [c.162]

    Полученные результаты можно объяснить тем, что сера из бензина удаляется в две стадии. На первой стадии происходит разрыв связей R—S в молекулах R—S—R. Степень обессеривания на этой стадии не зависит от температуры. На второй стадии сернистые продукты первичного распада подвергаются вторичным реакциям без изменения числа углеродных атомов в молекуле. Интенсивность реакции во второй стадии зависит от температуры константа скорости при 470 °С втрое выше, чем при 530 °С. Это объясняется, видимо, лучшим протеканием реакции перераспределения водорода при низких температурах крекинга. [c.107]

    Некоторые отклонения от линейной зависимости для октане- вых чисел (и. м.) бензинов, полученных при 440 °С, обусловлены, по-видимому, чрезмерным протеканием реакций перераспределения водорода. [c.137]

    Образование кокса и его отложение на катализаторе является нежелательной реакцией при крекинге углеводородного сырья, способствующей обратимой неравновесной дезактивации катализатора. В то же время тепло, выделяющееся в регенераторе при окислении кокса с целью восстановления активности катализатора, необходимо для обеспечения теплового баланса в системе. Кроме того, образующийся кокс в некоторой степени участвует в реакциях перераспределения водорода, важных для получения бензина высокого качества [1, 12, 99]. Развитие технологии каталитического крекинга характеризуется непрерывным уменьшением выхода кокса с целью достижения уровня, требуемого только для поддержания теплового баланса при полном окислении в СО . Этапы этого развития [27], показанные на рис. 4,38, свидетельствуют [c.142]

    Показано, что образование бутиленов завершается на высоте слоя катализатора около 2 м (рис. 6.5). Дальнейшее увеличение высоты слоя шарикового катализатора приводит к снижению выхода бутиленов за счет реакции перераспределения водорода и полимеризации. Выход пропилена растет по всей высоте реактора. [c.226]

    С началом катагенных превращений первичные, сравнительно крупногабаритные макромолекулы ВМС постепенно деградируют, отщепляя фрагменты, попадающие в низкомолекулярные фракции и обусловливающие облегчение фракционного состава нефти, дополнительно ароматизируются вследствие реакций перераспределения водорода и дегидрирования циклогексановых колец и организуются в надмолекулярные пачечные структуры благодаря ассоциации и химическому связыванию отдельных ароматических блоков. Немаловажную роль в ассоциации, приводящей к пространственному упорядочению макромолекул, должны играть ориентирующие л — я-взаимодействия полисопряженных систем, донорно-акцепторные взаимодействия между гетероароматически-ми фрагментами и процессы образования комплексов между орга- [c.200]

    Помимо интенсивно-го развития реакций перераспределения водорода, при каталитическом крекинге наряду с. реакциями распада интенсивно протекают реакции синтеза (полимеризации олефинов, алкилирования), а также изомеризации. Олефины в условиях каталитического крекинга значительно менее устойчивы, чем парафины с тем же число-м углеродных атомов и распадаются быстрее. При каталитическом крекинге распад происходит на меньшее число обломков, чем при термическом и поэтому, при значительно более высоко-м выходе бензина за пропуск, вых-од газа при каталитическом крекинге меньше, и газ содержит меньше метана и этана и больше углеводородов Сз и С4, чем газ термического крекинга. В табл. 71 приведены некоторые показатели по термическому и каталитическому крекингу газойля. [c.120]

    Равноиесие реакции перераспределения водорода будет смещено вправо, если К >К2, т. е. когда в термодинамическом отношении вещество А более склонно к гидрированию но сравнению с соединением Б. Этим объясняется, что в системах [c.463]

    Экспериментальное изучение каталитического 1 рекинга показало, что при обычных режимах и одинаковых условиях процесса наиболее устойчивыми являются незамещенные ароматические углеводороды. За ними следуют парафиновые углеводороды. Значительно легче крекируются нафтено-ароматические и высокораз-ветвлейные парафиновые углеводороды и еще быстрее — нафтено-гые, а также заыеп1енные арома Ические углеводороды. Олефины наименее стойки в условиях каталитического крекинга. Образующиеся при расщеплении парафинов нормального строения л й-новые углеводороды легко изомеризуются и дальше часть их превращается в результате реакций перераспределения водорода в изопарафины. Скорость крекинга парафиновых и нафтеновых углево дородов быстро растет с увеличением молекулярного веса соеди-ненив. [c.34]

    В результате образуются олефиновые углеводороды и при дальнейших реакциях перераспределения водорода и уплотнения диеновых углеводородов — кокс. При передаче катализатору или молекуле олефина протона циклог.ексильные радикалы превращаются в соответствующие циклоолефины  [c.202]

    Вследствие ослабления крекинга в этих условиях уменьшаются выходи светлых продуктов. Кроме того, в связи с увеличением ( оотношения сырье/ катализатор ухудшаются условия протекания реакции перераспределения водорода, поэтому водород сырья распределяется менее рационально в целевых продуктах. Количество сульфирующихся углеводородов в светлых растет в основном за счет непредельных углеводородов (йодные числа увеличиваются). [c.278]

    Взаимодействие в аналогичных условиях изобутана с октенами, полученными горячекислотной полимеризацией изобутилена и бутена-1, показывает, что наряду с реакцией перераспределения водорода протекает реакция деполимеризации олефинов, т. е. взаимодействие происходит таким образом, что реакции алкилирования предшествует деполимеризация димера бутилена и образовавшийся бутилен реагирует с изобутаном  [c.54]

    Алкилирование при взаимодействии изобутана с три-мером пропилена при 20°С в присутствии 100%-ной серной кислоты не протекает [17]. Продукты реакции содержат примерно рав1ные количества ( 86% от теоретического) фракции нонанов и триметилпентанов. По свойствам нонановая фракция аналогична продукту гидрирования тримера пропилена молекулярным водородом. Тридеканы не образуются. Полученные продукты свидетельствуют о Протекании реакций перераспределения водорода и автоалкилирования. [c.55]

    Использование в качестве сырья для алкилирования ол ефинов от Сб до Сд еще менее целесообразно по той причине, что октановое число получаемого при этом алкилата невелико, а расход кислоты значителен. Вследствие протекания реакций перераспределения водорода между изобутаном и олефинами образуются значительные количества насыщенных углеводородов Се—Сд нормального строения, чем и объясняется понижение октанового числа конечного продукта. [c.149]

    Реакции перераспределения водорода протекают как побочные при термических и каталитических процессах переработки углеводородов, приводя, в частности, к образованию обеднен ных водородом углеродистых отложений. Неоднократно отмечали роль олефинов в образовании таких отложений, поскольку ненасыщенные углеводороды образуюяч я в различных про- [c.221]

    Цеолит LZ-210 способен выдерживать температуры > 850Т. Другая важная особенность новых высококремнеземных цеолитов (пентаси-лов) как катализаторов - низкий выход кокса, что объясняется их трубчатой структурой (d = 0,6 нм), препятствующей протеканию реакций поликонденсации коксогенов или реакций диенового синтеза Дильса и Альдера и способствующей диффузии промежуточных продуктов и реакциям перераспределения водорода. [c.118]

    В то же время механизм образования алкилциклогексанов из насыш,енных кислот пока еще не ясен. Ароматические углеводороды образуются, как уже указывалось, за счет реакций перераспределения водорода, протекающих по схеме  [c.196]

    Наряду с основной реакцией алкилирования изобутана олефинами могут протекать в большей или меньшей степени в зависимости от условий процесса нежелательные побочные реакции перераспределения водорода, деструктивного алкилирования, полимеризации, образования эфиров и комплексов катализатора с углеводородами и др. В реакции перераспределения водорода образуется углеводород с таким же числом атомов углерода, как у исходного олефина, т. е. происходит самоалкилирование изобута-на, например  [c.301]

    Результаты крекинга парафинов на алюмосиликатных катализаторах в значительной степени определяются реакциями перераспределения водорода. Содержание насыщенных углеводороде в продуктах крекинга параф 11 ов Са—С па цеолнтсодержащих катализаторах (см. табл. 4.2) превосходит в большинстве случаев содержание олефиновых углеводородов. / Донорам —водорода при крекинге могут служить парафиновые углеводороды исходного сырья, олефины из продуктов реакции, полимерные продукты уплотнения. Углеводороды исходного сырья особенно эффективно участвуют в реакции Н-переноса при наличии в их молекулах третичного атома углерода/Например [12], при крекинге изооктана на различных кислотных катализаторах константа скорости перераспределения водорода изменяется прямо пропорционально скорости превращения исходного сырья (рис. 4.5). [c.89]

    Промышленное применение получили пока только катализаторы типа алюмосиликатов, так как, о бладая достаточно высокой каталитической активностью, они в то же время легко регенерируются. Образующиеся в результате реакций перераспределения водорода в больших количествах коксообразные продукты, отлагаясь на катализаторе, быстро снижают его активность. Однако продувка -воздухом, кислород котх>рого сжигает коксо-образные отложения, легко восстанавливает активность катализатора. [c.120]

    Цеолитный катализатор интенсифицирует реакции перераспределения водорода, протекающие почти стехиометрически по схеме  [c.101]


Смотреть страницы где упоминается термин Реакции перераспределения водорода: [c.159]    [c.279]    [c.454]    [c.93]    [c.184]    [c.222]    [c.137]    [c.168]    [c.104]    [c.310]    [c.319]    [c.162]    [c.410]   
Химия технология и расчет процессов синтеза моторных топлив (1955) -- [ c.120 , c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Перераспределения



© 2025 chem21.info Реклама на сайте